المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

علم الكيمياء
عدد المواضيع في هذا القسم 11123 موضوعاً
علم الكيمياء
الكيمياء التحليلية
الكيمياء الحياتية
الكيمياء العضوية
الكيمياء الفيزيائية
الكيمياء اللاعضوية
مواضيع اخرى في الكيمياء
الكيمياء الصناعية

Untitled Document
أبحث عن شيء أخر
تربية الماشية في روسيا الفيدرالية
2024-11-06
تربية ماشية اللبن في البلاد الأفريقية
2024-11-06
تربية الماشية في جمهورية مصر العربية
2024-11-06
The structure of the tone-unit
2024-11-06
IIntonation The tone-unit
2024-11-06
Tones on other words
2024-11-06

التوجّه الديني
1-4-2018
Endoplasmic Reticulum
4-11-2015
حجيّة مراسيل جمع من الرواة / مرسلة أحمد بن محمد بن عيسى.
2024-04-18
Bicycle Tracks
14-11-2016
المركز القانوني للوكيل الأول وحدود صلاحياته في القوانين الوضعية
2023-09-23
المنفعة الكلية والمنفعة الحدية
3-8-2018


The Substitution Method for Proof of Structure  
  
1569   03:09 مساءً   التاريخ: 21-12-2021
المؤلف : John D. Roberts and Marjorie C. Caserio
الكتاب أو المصدر : Basic Principles of Organic Chemistry : LibreTexts project
الجزء والصفحة : ........
القسم : علم الكيمياء / الكيمياء العضوية / مواضيع عامة في الكيمياء العضوية /


أقرأ أيضاً
التاريخ: 2024-04-23 667
التاريخ: 2023-09-09 942
التاريخ: 9-9-2020 1618
التاريخ: 27-10-2020 1136

The Substitution Method for Proof of Structure

The problem of determining whether a particular isomer of C2H4Br2 is

Two isomers of C 2 H 4 B R 2. Left: Bromine atoms are on different carbons. Right: bromine atoms are both on the rightmost carbon.

could be solved today in a few minutes by spectroscopic means, as will be explained in Chapter 9. However, at the time structure theory was being developed, the structure had to be deduced on the basis of chemical reactions, which could include either how the compound was formed or what it could be converted to. A virtually unassailable proof of structure, where it is applicable, is to determine how many different substitution products each of a given group of isomers can give. For the C2H4Br2 pair of isomers, substitution of a bromine for a hydrogen will be seen to give only one possibility with one compound and two with the other:

Four molecules labeled 6 through 9. 6 and 7 are C 2 H 4 B R 2 molecules and 8 and 9 are C 2 H 3 B R 3 molecules. 6: bromine atoms are on different carbon. Arrow to 8: Two bromines on right carbon and one bromine on left carbon. 7: Both bromine atoms on right carbon. Arrow from 7 to 8 and arrow from 7 to 9: Three bromine atoms on right carbon.

Therefore, if we have two bottles, one containing one C2H4Br2 isomer and one the other and run the substitution test, the compound that gives only one product is 6 and the one that gives a mixture of two products is 7. Further, it will be seen that the test, besides telling which isomer is 6 and which is 7, establishes the structures of the two possible C2H3Br3 isomers, 8 and 9. Thus only 8 can be formed from both of the different C2H4Br2 isomers whereas 9 is formed from only one of them.

The Benzene Problem

There were already many interconversion reactions of organic compounds known at the time that valence theory, structural formulas, and the concept of the tetrahedral carbon came into general use. As a result, it did not take long before much of organic chemistry could be fitted into a concordant whole. One difficult problem was posed by the structures of a group of substitution products of benzene, C6H6, called "aromatic compounds," which for a long time defied explanation. Benzene itself had been prepared first by Michael Faraday, in 1825. An ingenious solution for the benzene structure was provided by A. Kekule, in 1866, wherein he suggested (apparently as the result of a hallucinatory perception) that the six carbons were connected in a hexagonal ring with alternating single and double carbon-to-carbon bonds, and with each carbon connected to a single hydrogen, 1010:

Kekule structure of benzene.

This concept was controversial, to say the least, mainly on two counts. Benzene did not behave as expected, as judged by the behavior of other compounds with carbon-to-carbon double bonds and also because there should be two different dibromo substitution products of benzene with the bromine on adjacent carbons (11 and 12) but only one such compound could be isolated.

Left: 11. Kekule structure of benzene ring with two bromine substituents. Single bond between carbons with bromine atoms. Right: 12. Kekule structure of benzene ring with two bromine substituents. Double bond between carbons with bromine atoms.

Kekule explained the second objection away by maintaining that 11 and 12 were in rapid equilibrium through concerted bond shifts, in something like the same manner as the free-rotation hypothesis mentioned previously:

Kekule structure of benzene ring with two bromine molecules. Arrows from each double bond to each adjacent single bond two show resonance structures.

However, the first objection could not be dismissed so easily and quite a number of alternative structures were proposed over the ensuing years. The controversy was not really resolved until it was established that benzene is a regular planar hexagon, which means that all of its CC bonds have the same length, in best accord with a structure written not with double, not with single, but with 1.5 bonds between the carbons, as in 13:

Kekule structure of benzene ring with dashed double bonds on each single bond.

This. in turn, generated a massive further theoretical controversy over just how 13 should be interpreted, which, for a time, even became a part of "Cold-War" politics! We shall examine experimental and theoretical aspects of the benzene structure in some detail later. It is interesting that more than 100 years after Kekule's proposal the final story on the benzene structure is yet to be told.55

Proof of Structure through Reactions

The combination of valence theory and the substitution method  gives, for many compounds, quite unequivocal proofs of structure. Use of chemical transformations for proofs of structure depends on the applicability of a simple guiding principle, often called the "principle of least structural change." As we shall see later, many exceptions are known and care is required to keep from making serious errors. With this caution, let us see how the principle may be applied. The compound C2H5Br  reacts slowly with water to give a product of formula C2H6O. The normal valence of oxygen is two, and we can write two, and only two, different structures, 19 and 20 , for C2H6O:

Starting molecule: C 2 H 5 B R. Arrow indicates addition of water molecule and loss of H B R. Two possible products: 19. OH group added to left carbon. 20. Oxygen in middle of molecule with two methyl groups attached.

The principle of least structural change favors 19 as the product, because the reaction to form it is a simple replacement of bromine bonded to carbon by OH, whereas formation of 20 would entail a much more drastic rearrangement of bonds. The argument is really a subtle one, involving an assessment of the reasonableness of various possible reactions. On the whole, however, it works rather well and, in the specific case of the C2H6O isomers, is strongly supported by the fact that treatment of 19 with strong hydrobromic acid (HBr) converts it back to C2H5Br. In contrast, the isomer of structure 20 reacts with HBr to form two molecules of CH3Br:

Top: C 2 H 6 O molecule with O H group on rightmost carbon plus H B R goes to one C 2 H 5 B R and one water molecule. Bottom: C 2 H 6 O molecule with oxygen in the middle plus 2 H B R molecules go to 2 C H 3 B R molecules and a water molecule.

In each case, CO bonds are broken and CBr bonds are formed.

We could conceive of many other possible reactions of C2H6O with HBr, for example

C 2 H 6 O molecule plus H B R does not go to C 2 H 5 B R O and H 2.

which, as indicated by ↛, does not occur, but hardly can be ruled out by the principle of least structural change itself. Showing how the probability of such alternative reactions can be evaluated will be a very large part of our later discussions.




هي أحد فروع علم الكيمياء. ويدرس بنية وخواص وتفاعلات المركبات والمواد العضوية، أي المواد التي تحتوي على عناصر الكربون والهيدروجين والاوكسجين والنتروجين واحيانا الكبريت (كل ما يحتويه تركيب جسم الكائن الحي مثلا البروتين يحوي تلك العناصر). وكذلك دراسة البنية تتضمن استخدام المطيافية (مثل رنين مغناطيسي نووي) ومطيافية الكتلة والطرق الفيزيائية والكيميائية الأخرى لتحديد التركيب الكيميائي والصيغة الكيميائية للمركبات العضوية. إلى عناصر أخرى و تشمل:- كيمياء عضوية فلزية و كيمياء عضوية لا فلزية.


إن هذا العلم متشعب و متفرع و له علاقة بعلوم أخرى كثيرة ويعرف بكيمياء الكائنات الحية على اختلاف أنواعها عن طريق دراسة المكونات الخلوية لهذه الكائنات من حيث التراكيب الكيميائية لهذه المكونات ومناطق تواجدها ووظائفها الحيوية فضلا عن دراسة التفاعلات الحيوية المختلفة التي تحدث داخل هذه الخلايا الحية من حيث البناء والتخليق، أو من حيث الهدم وإنتاج الطاقة .


علم يقوم على دراسة خواص وبناء مختلف المواد والجسيمات التي تتكون منها هذه المواد وذلك تبعا لتركيبها وبنائها الكيميائيين وللظروف التي توجد فيها وعلى دراسة التفاعلات الكيميائية والاشكال الأخرى من التأثير المتبادل بين المواد تبعا لتركيبها الكيميائي وبنائها ، وللظروف الفيزيائية التي تحدث فيها هذه التفاعلات. يعود نشوء الكيمياء الفيزيائية إلى منتصف القرن الثامن عشر . فقد أدت المعلومات التي تجمعت حتى تلك الفترة في فرعي الفيزياء والكيمياء إلى فصل الكيمياء الفيزيائية كمادة علمية مستقلة ، كما ساعدت على تطورها فيما بعد .