Read More
Date: 11-10-2021
946
Date: 5-11-2021
970
Date: 17-11-2021
677
|
The Menger sponge is a fractal which is the three-dimensional analog of the Sierpiński carpet.
The th iteration of the Menger sponge is implemented in the Wolfram Language as MengerMesh[n, 3].
Let be the number of filled boxes, the length of a side of a hole, and the fractional volume after the th iteration, then
(1) |
|||
(2) |
|||
(3) |
The capacity dimension is therefore
(4) |
|||
(5) |
|||
(6) |
|||
(7) |
(OEIS A102447).
The Menger sponge, in addition to being a fractal, is also a super-object for all compact one-dimensional objects, i.e., the topological equivalent of all one-dimensional objects can be found in a Menger sponge (Peitgen et al. 1992).
The image above shows a metal print of the Menger sponge created by digital sculptor Bathsheba Grossman (http://www.bathsheba.com/).
REFERENCES:
Dickau, R. "Sierpinski-Menger Sponge Code and Graphic." http://library.wolfram.com/infocenter/MathSource/4662/.
Dickau, R. M. "Menger (Sierpinski) Sponge." http://mathforum.org/advanced/robertd/sponge.html.
Gleick, J. Chaos: Making a New Science. New York: Penguin Books, p. 101, 1988.
Grossman, B. "Menger Sponge." http://www.bathsheba.com/math/menger.
Kosmulski, M. "Modulus Origami--Fractals, IFS." http://hektor.umcs.lublin.pl/~mikosmul/origami/fractals.html.
Mandelbrot, B. B. The Fractal Geometry of Nature. New York: W. H. Freeman, p. 145, 1983.
Mosely, J. "Menger's Sponge (Depth 3)." http://world.std.com/~j9/sponge/.
Peitgen, H.-O.; Jürgens, H.; and Saupe, D. Chaos and Fractals: New Frontiers of Science. New York: Springer-Verlag, 1992.
Sloane, N. J. A. Sequence A102447 in "The On-Line Encyclopedia of Integer Sequences."
Werbeck, S. "A Journey into Menger's Sponge." http://www.angelfire.com/art2/stw/.
|
|
علامات بسيطة في جسدك قد تنذر بمرض "قاتل"
|
|
|
|
|
أول صور ثلاثية الأبعاد للغدة الزعترية البشرية
|
|
|
|
|
مكتبة أمّ البنين النسويّة تصدر العدد 212 من مجلّة رياض الزهراء (عليها السلام)
|
|
|