Read More
Date: 28-6-2021
1747
Date: 28-6-2021
2901
Date: 6-6-2021
1562
|
Let be a subset of a metric space. Then the set is open if every point in has a neighborhood lying in the set. An open set of radius and center is the set of all points such that , and is denoted . In one-space, the open set is an open interval. In two-space, the open set is a disk. In three-space, the open set is a ball.
More generally, given a topology (consisting of a set and a collection of subsets ), a set is said to be open if it is in . Therefore, while it is not possible for a set to be both finite and open in the topology of the real line (a single point is a closed set), it is possible for a more general topological set to be both finite and open.
The complement of an open set is a closed set. It is possible for a set to be neither open nor closed, e.g., the half-closed interval .
REFERENCES:
Croft, H. T.; Falconer, K. J.; and Guy, R. K. Unsolved Problems in Geometry. New York: Springer-Verlag, p. 2, 1991.
Krantz, S. G. Handbook of Complex Variables. Boston, MA: Birkhäuser, p. 3, 1999.
|
|
علامات بسيطة في جسدك قد تنذر بمرض "قاتل"
|
|
|
|
|
أول صور ثلاثية الأبعاد للغدة الزعترية البشرية
|
|
|
|
|
مدرسة دار العلم.. صرح علميّ متميز في كربلاء لنشر علوم أهل البيت (عليهم السلام)
|
|
|