المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
جناية الحكام
2025-04-05
Provision of positive support Case study
2025-04-05
القصيدة الطويلة وقصيدة القناع
2025-04-05
اسم الفاعل
2025-04-05
Understanding the needs of young people in public care
2025-04-05
مرحلة الشيخوخة للنهر
2025-04-05

القضاء والقدر
18-8-2019
عملية اتخاذ القرارات الأخلاقية الصحفية
2024-12-04
Norfuk vowel phonemes
2024-05-06
استحباب السعي ماشيا وجواز الركوب فيه.
27-4-2016
الأمينات Amines
4-5-2017
الدائرة التخطيطية
9-7-2021

Neighborhood  
  
1786   06:05 مساءً   date: 24-7-2021
Author : Balakrishnan, R. and Ranganathan, K.
Book or Source : "Vertex Cuts and Edge Cuts." §3.1 in A Textbook of Graph Theory. New York: Springer-Verlag
Page and Part : ...


Read More
Date: 17-7-2021 1771
Date: 8-5-2021 1945
Date: 4-7-2021 1809

Neighborhood

"Neighborhood" is a word with many different levels of meaning in mathematics.

One of the most general concepts of a neighborhood of a point x in R^n (also called an epsilon-neighborhood or infinitesimal open set) is the set of points inside an n-ball with center x and radius epsilon>0. A set containing an open neighborhood is also called a neighborhood.

The graph neighborhood of a vertex v in a graph is the set of all the vertices adjacent to v generally including v itself. More generally, the ith neighborhood of v is the set of all vertices that lie at the distance i from v. The subgraph induced by the neighborhood of a graph from vertex v (again, most commonly including v itself) is called the neighborhood graph (or sometimes "ego graph" in more recent literature).


REFERENCES:

Balakrishnan, R. and Ranganathan, K. "Vertex Cuts and Edge Cuts." §3.1 in A Textbook of Graph Theory. New York: Springer-Verlag, p. 3, 1999.

Buckley, F. and Harary, F. Distance in Graphs. Redwood City, CA: Addison-Wesley, p. 167, 1990.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.