المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
{افان مات او قتل انقلبتم على اعقابكم}
2024-11-24
العبرة من السابقين
2024-11-24
تدارك الذنوب
2024-11-24
الإصرار على الذنب
2024-11-24
معنى قوله تعالى زين للناس حب الشهوات من النساء
2024-11-24
مسألتان في طلب المغفرة من الله
2024-11-24

Boiling Point and Water Solubility
27-11-2019
Cell Motility
13-10-2015
درجة حرارة الأرض
4-3-2022
نفي الشيخ الطوسي للتحريف مع روايته له
27-11-2014
أدلة أنصار نظرية استقلال الروح‏
17-12-2015
الاحتياجات البيئية للدخن
12/11/2022

Metrizable Topology  
  
1750   06:00 مساءً   date: 24-7-2021
Author : Cullen, H. F.
Book or Source : "Metrizable Spaces and Uniformizable Spaces." Ch. 4 in Introduction to General Topology. Boston, MA: Heath
Page and Part : ...


Read More
Date: 10-6-2021 1597
Date: 15-5-2021 1752
Date: 4-8-2021 1377

Metrizable Topology

A topology that is "potentially" a metric topology, in the sense that one can define a suitable metric that induces it. The word "potentially" here means that although the metric exists, it may be unknown.

In fact, there are sufficient criteria on the topology that assure the existence of such a metric even if this is not explicitly given. An example of an existence theorem of this kind is due to Urysohn (Kelley 1955, p. 125), who proved that a regular T1-space whose topology has a countable basis is metrizable.

Conversely, a metrizable space is always T_1 and regular, but the condition on the basis has to be weakened since in general, it is only true that the topology has a basis which is formed by countably many locally finite families of open sets.

Special metrizability criteria are known for T2-spaces. A compact T_2-space is metrizable iff the set of all elements (x,x) of X×X is a zero set (Willard 1970, p. 163). The continuous image of a compact metric space in a Hausdorff space is metrizable. (Willard 1970, p. 166). This implies in particular that a distance can be defined on every path in a T2-space.


REFERENCES:

Cullen, H. F. "Metrizable Spaces and Uniformizable Spaces." Ch. 4 in Introduction to General Topology. Boston, MA: Heath, pp. 141-209, 1968.

Kelley, J. L. General Topology. New York: Van Nostrand, 1955.

Willard, S. General Topology. Reading, MA: Addison-Wesley, 1970.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.