Read More
Date: 2-8-2021
1789
Date: 13-6-2021
3562
Date: 15-7-2021
1457
|
The Kauffman -polynomial, also called the normalized bracket polynomial, is a 1-variable knot polynomial denoted (Adams 1994, p. 153), (Kauffman 1991, p. 33), or (Livingston 1993, p. 219), and defined for a link by
(1) |
where is the bracket polynomial and is the writhe of (Kauffman 1991, p. 33; Adams 1994, p. 153). It is implemented in the Wolfram Language as KnotData[knot, "BracketPolynomial"].
This polynomial is invariant under ambient isotopy, and relates mirror images by
(2) |
It is identical to the Jones polynomial with the change of variable
(3) |
and related to the two-variable Kauffman polynomial F by
(4) |
The Kaufman -polynomial of the trefoil knot is therefore
(5) |
(Kaufmann 1991, p. 35). The following table summarizes the polynomials for named knots.
knot | Kaufman -polynomial |
figure eight knot | |
Miller Institute knot | |
Perko pair | |
Solomon's seal knot | |
stevedore's knot | |
trefoil knot | |
unknot | 1 |
REFERENCES:
Adams, C. C. The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots. New York: W. H. Freeman, 1994.
Kauffman, L. H. Knots and Physics. Singapore: World Scientific, p. 33, 1991.
Livingston, C. Knot Theory. Washington, DC: Math. Assoc. Amer., 1993.
|
|
علامات بسيطة في جسدك قد تنذر بمرض "قاتل"
|
|
|
|
|
أول صور ثلاثية الأبعاد للغدة الزعترية البشرية
|
|
|
|
|
مكتبة أمّ البنين النسويّة تصدر العدد 212 من مجلّة رياض الزهراء (عليها السلام)
|
|
|