Read More
Date: 26-6-2021
![]()
Date: 16-6-2021
![]()
Date: 2-8-2021
![]() |
The Kauffman -polynomial, also called the normalized bracket polynomial, is a 1-variable knot polynomial denoted
(Adams 1994, p. 153),
(Kauffman 1991, p. 33), or
(Livingston 1993, p. 219), and defined for a link
by
![]() |
(1) |
where is the bracket polynomial and
is the writhe of
(Kauffman 1991, p. 33; Adams 1994, p. 153). It is implemented in the Wolfram Language as KnotData[knot, "BracketPolynomial"].
This polynomial is invariant under ambient isotopy, and relates mirror images by
![]() |
(2) |
It is identical to the Jones polynomial with the change of variable
![]() |
(3) |
and related to the two-variable Kauffman polynomial F by
![]() |
(4) |
The Kaufman -polynomial of the trefoil knot is therefore
![]() |
(5) |
(Kaufmann 1991, p. 35). The following table summarizes the polynomials for named knots.
knot | Kaufman ![]() |
figure eight knot | ![]() |
Miller Institute knot | ![]() |
Perko pair | ![]() |
Solomon's seal knot | ![]() |
stevedore's knot | ![]() |
trefoil knot | ![]() |
unknot | 1 |
REFERENCES:
Adams, C. C. The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots. New York: W. H. Freeman, 1994.
Kauffman, L. H. Knots and Physics. Singapore: World Scientific, p. 33, 1991.
Livingston, C. Knot Theory. Washington, DC: Math. Assoc. Amer., 1993.
|
|
التوتر والسرطان.. علماء يحذرون من "صلة خطيرة"
|
|
|
|
|
مرآة السيارة: مدى دقة عكسها للصورة الصحيحة
|
|
|
|
|
ضمن مؤتمر ذاكرة الألم في العراق مدير كرسي اليونسكو في جامعة الموصل يقدّم دراسةً تناقش استراتيجية الكرسي لنبذ التطرف وتعزيز ثقافة السلام
|
|
|