Read More
Date: 10-7-2021
1126
Date: 1-7-2017
1252
Date: 23-7-2021
1745
|
Given a principal bundle , with fiber a Lie group and base manifold , and a group representation of , say , then the associated vector bundle is
(1) |
In particular, it is the quotient space where .
This construction has many uses. For instance, any group representation of the orthogonal group gives rise to a bundle of tensors on a Riemannian manifold as the vector bundle associated to the frame bundle.
For example, is the frame bundle on , where
(2) |
writing the special orthogonal matrix with rows . It is a bundle with the action defined by
(3) |
which preserves the map .
The tangent bundle is the associated vector bundle with the standard group representation of on , given by pairs , with and . Two pairs and represent the same tangent vector iff there is a such that and .
|
|
علامات بسيطة في جسدك قد تنذر بمرض "قاتل"
|
|
|
|
|
أول صور ثلاثية الأبعاد للغدة الزعترية البشرية
|
|
|
|
|
مكتبة أمّ البنين النسويّة تصدر العدد 212 من مجلّة رياض الزهراء (عليها السلام)
|
|
|