المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر
تربية أنواع ماشية اللحم
2024-11-05
زكاة الذهب والفضة
2024-11-05
ماشية اللحم في الولايات المتحدة الأمريكية
2024-11-05
أوجه الاستعانة بالخبير
2024-11-05
زكاة البقر
2024-11-05
الحالات التي لا يقبل فيها الإثبات بشهادة الشهود
2024-11-05

البروتين واثره في صحة الجسم
15-4-2016
Saturated facts
24-1-2017
اسم الآلة
23-02-2015
Linguistic purism
2023-12-09
ذبابة الملفوف الصغيرة Chortohila (= Hylemyia, Phorbia) brassicae
30-3-2018
الشروط الشكلية لممارسة العمل
2023-05-08

Associated Vector Bundle  
  
1667   06:14 مساءً   date: 22-5-2021
Author : المرجع الالكتروني للمعلوماتيه
Book or Source : www.almerja.com
Page and Part : ...


Read More
Date: 10-7-2021 1126
Date: 1-7-2017 1252
Date: 23-7-2021 1745

Associated Vector Bundle

Given a principal bundle pi:A->M, with fiber a Lie group G and base manifold M, and a group representation of G, say phi:G×V->V, then the associated vector bundle is

 pi^~:A×V/G->M.

(1)

In particular, it is the quotient space A×V/G where (a,v)∼(ga,g^(-1)v).

This construction has many uses. For instance, any group representation of the orthogonal group gives rise to a bundle of tensors on a Riemannian manifold as the vector bundle associated to the frame bundle.

For example, pi:SO(3)->S^2 is the frame bundle on S^2, where

 pi([w_1; w_2; w_3])=w_1,

(2)

writing the special orthogonal matrix with rows w_i. It is a SO(2) bundle with the action defined by

 [costheta -sintheta; sintheta costheta]·A=[1 0 0; 0 costheta -sintheta; 0 sintheta costheta]A,

(3)

which preserves the map pi.

The tangent bundle is the associated vector bundle with the standard group representation of SO(2) on V=R^2, given by pairs (v,A), with v=(a,b) in R^2 and A in SO(3). Two pairs (v_1,A_1) and (v_2,A_2) represent the same tangent vector iff there is a g in SO(2) such that v_2=gv_1 and A_1=g·A_2.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.