Read More
Date: 24-4-2021
![]()
Date: 15-2-2021
![]()
Date: 16-3-2021
![]() |
Given an matrix
, the Moore-Penrose generalized matrix inverse is a unique
matrix pseudoinverse
. This matrix was independently defined by Moore in 1920 and Penrose (1955), and variously known as the generalized inverse, pseudoinverse, or Moore-Penrose inverse. It is a matrix 1-inverse, and is implemented in the Wolfram Language as PseudoInverse[m].
The Moore-Penrose inverse satisfies
![]() |
![]() |
![]() |
(1) |
![]() |
![]() |
![]() |
(2) |
![]() |
![]() |
![]() |
(3) |
![]() |
![]() |
![]() |
(4) |
where is the conjugate transpose.
It is also true that
![]() |
(5) |
is the shortest length least squares solution to the problem
![]() |
(6) |
If the inverse of exists, then
![]() |
(7) |
as can be seen by premultiplying both sides of (6) by to create a square matrix which can then be inverted,
![]() |
(8) |
giving
![]() |
![]() |
![]() |
(9) |
![]() |
![]() |
![]() |
(10) |
REFERENCES:
Ben-Israel, A. and Greville, T. N. E. Generalized Inverses: Theory and Applications. New York: Wiley, 1977.
Campbell, S. L. and Meyer, C. D. Jr. Generalized Inverses of Linear Transformations. New York: Dover, 1991.
Lawson, C. and Hanson, R. Solving Least Squares Problems. Englewood Cliffs, NJ: Prentice-Hall, 1974.
Penrose, R. "A Generalized Inverse for Matrices." Proc. Cambridge Phil. Soc. 51, 406-413, 1955.
Rao, C. R. and Mitra, S. K. Generalized Inverse of Matrices and Its Applications. New York: Wiley, 1971.
|
|
منها نحت القوام.. ازدياد إقبال الرجال على عمليات التجميل
|
|
|
|
|
دراسة: الذكاء الاصطناعي يتفوق على البشر في مراقبة القلب
|
|
|
|
|
هيئة الصحة والتعليم الطبي في العتبة الحسينية تحقق تقدما بارزا في تدريب الكوادر الطبية في العراق
|
|
|