Read More
Date: 15-2-2021
![]()
Date: 26-4-2021
![]()
Date: 19-4-2021
![]() |
Let be the probability that a random walk on a
-D lattice returns to the origin. In 1921, Pólya proved that
![]() |
(1) |
but
![]() |
(2) |
for . Watson (1939), McCrea and Whipple (1940), Domb (1954), and Glasser and Zucker (1977) showed that
![]() |
(3) |
(OEIS A086230), where
![]() |
![]() |
![]() |
(4) |
![]() |
![]() |
![]() |
(5) |
![]() |
![]() |
![]() |
(6) |
![]() |
![]() |
![]() |
(7) |
![]() |
![]() |
![]() |
(8) |
![]() |
![]() |
![]() |
(9) |
(OEIS A086231; Borwein and Bailey 2003, Ch. 2, Ex. 20) is the third of Watson's triple integrals modulo a multiplicative constant, is a complete elliptic integral of the first kind,
is a Jacobi theta function, and
is the gamma function.
Closed forms for are not known, but Montroll (1956) showed that for
,
![]() |
(10) |
where
![]() |
![]() |
![]() |
(11) |
![]() |
![]() |
![]() |
(12) |
and is a modified Bessel function of the first kind.
Numerical values of from Montroll (1956) and Flajolet (Finch 2003) are given in the following table.
![]() |
OEIS | ![]() |
3 | A086230 | 0.340537 |
4 | A086232 | 0.193206 |
5 | A086233 | 0.135178 |
6 | A086234 | 0.104715 |
7 | A086235 | 0.0858449 |
8 | A086236 | 0.0729126 |
REFERENCES:
Borwein, J. and Bailey, D. Mathematics by Experiment: Plausible Reasoning in the 21st Century. Wellesley, MA: A K Peters, 2003.
Finch, S. R. "Pólya's Random Walk Constant." §5.9 in Mathematical Constants. Cambridge, England: Cambridge University Press, pp. 322-331, 2003.
Domb, C. "On Multiple Returns in the Random-Walk Problem." Proc. Cambridge Philos. Soc. 50, 586-591, 1954.
Glasser, M. L. and Zucker, I. J. "Extended Watson Integrals for the Cubic Lattices." Proc. Nat. Acad. Sci. U.S.A. 74, 1800-1801, 1977.
McCrea, W. H. and Whipple, F. J. W. "Random Paths in Two and Three Dimensions." Proc. Roy. Soc. Edinburgh 60, 281-298, 1940.
Montroll, E. W. "Random Walks in Multidimensional Spaces, Especially on Periodic Lattices." J. SIAM 4, 241-260, 1956.
Sloane, N. J. A. Sequences A086230, A086231, A086232, A086233, A086234, A086235, and A086236 in "The On-Line Encyclopedia of Integer Sequences."
Watson, G. N. "Three Triple Integrals." Quart. J. Math., Oxford Ser. 2 10, 266-276, 1939.
|
|
للعاملين في الليل.. حيلة صحية تجنبكم خطر هذا النوع من العمل
|
|
|
|
|
"ناسا" تحتفي برائد الفضاء السوفياتي يوري غاغارين
|
|
|
|
|
المجمع العلمي يقيم ورشة تطويرية ودورة قرآنية في النجف والديوانية
|
|
|