تاريخ الفيزياء
علماء الفيزياء
الفيزياء الكلاسيكية
الميكانيك
الديناميكا الحرارية
الكهربائية والمغناطيسية
الكهربائية
المغناطيسية
الكهرومغناطيسية
علم البصريات
تاريخ علم البصريات
الضوء
مواضيع عامة في علم البصريات
الصوت
الفيزياء الحديثة
النظرية النسبية
النظرية النسبية الخاصة
النظرية النسبية العامة
مواضيع عامة في النظرية النسبية
ميكانيكا الكم
الفيزياء الذرية
الفيزياء الجزيئية
الفيزياء النووية
مواضيع عامة في الفيزياء النووية
النشاط الاشعاعي
فيزياء الحالة الصلبة
الموصلات
أشباه الموصلات
العوازل
مواضيع عامة في الفيزياء الصلبة
فيزياء الجوامد
الليزر
أنواع الليزر
بعض تطبيقات الليزر
مواضيع عامة في الليزر
علم الفلك
تاريخ وعلماء علم الفلك
الثقوب السوداء
المجموعة الشمسية
الشمس
كوكب عطارد
كوكب الزهرة
كوكب الأرض
كوكب المريخ
كوكب المشتري
كوكب زحل
كوكب أورانوس
كوكب نبتون
كوكب بلوتو
القمر
كواكب ومواضيع اخرى
مواضيع عامة في علم الفلك
النجوم
البلازما
الألكترونيات
خواص المادة
الطاقة البديلة
الطاقة الشمسية
مواضيع عامة في الطاقة البديلة
المد والجزر
فيزياء الجسيمات
الفيزياء والعلوم الأخرى
الفيزياء الكيميائية
الفيزياء الرياضية
الفيزياء الحيوية
الفيزياء العامة
مواضيع عامة في الفيزياء
تجارب فيزيائية
مصطلحات وتعاريف فيزيائية
وحدات القياس الفيزيائية
طرائف الفيزياء
مواضيع اخرى
Growth of Point Distances in Embedded Space
المؤلف:
Garnett P. Williams
المصدر:
Chaos Theory Tamed
الجزء والصفحة:
219
14-3-2021
3364
Growth of Point Distances in Embedded Space
Suppose you are sitting at the far end of the stadium (the end zone) at ground level during a football game and your depth perception deserts you. That means, looking down the field, you see all the players as if they were distributed along a single line that stretches across the width of the field. In your view, many of the players are very close together. If you measure the distances between them in the view that you have, those distances are small. To see the true spatial distribution of the players, you'd need a two-dimensional view of the field, as if from a helicopter. Most measured distances between players from that view are larger than from your end-on view. The phase space analogy of all this is as follows. Embedding a two-dimensional attractor in one dimension causes many points to appear closer together than they really are. Calculated distances between points in that case are short. Relaxing the embedding by embedding the data in two dimensions lets many points move to their true positions, thereby increasing their distance from one another. Points that seem to be close to a given point in a low dimension and are farther away in the correct embedding dimension are false nearest neighbors.
The same thing happens if we look at a three-dimensional attractor as if we see it only in two dimensions. Say the two dimensions are the length and width of this printed page you are reading and that the third dimension goes from the page to your eyes. The attractor really consists of a group of points between the page and your eyes. Forcing the images of all points of our three-dimensional attractor onto a two-dimensional plane (the page) increases their apparent closeness or density. Again, many points that seem to be close to another point can be false nearest neighbors; their true or desired distance can be much greater.
When the embedding dimension is low (say, two), there isn't enough space for a higher-dimensional attractor to express itself fully, so to speak. Our pseudo phase space plot crams the poor attractor into fewer dimensions than it wants to be in. In that case, computed distances between points tend to be small. Increasing the embedding dimension releases more and more of the attractor's points from the straight-jacket constraint we've imposed (i.e. the low number of embedding dimensions). In other words, they move closer to their real relative locations, even if still partly confined by the embedding dimension. So, distances between points increase with increase in embedding dimension. With further increases in embedding dimension, an attractor gradually assumes its true spatial configuration. Computed distances between points then stop increasing and become constant. That notion is basic to various proposed methods for estimating lag and true embedding dimension.
الاكثر قراءة في الميكانيك
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
