تاريخ الفيزياء
علماء الفيزياء
الفيزياء الكلاسيكية
الميكانيك
الديناميكا الحرارية
الكهربائية والمغناطيسية
الكهربائية
المغناطيسية
الكهرومغناطيسية
علم البصريات
تاريخ علم البصريات
الضوء
مواضيع عامة في علم البصريات
الصوت
الفيزياء الحديثة
النظرية النسبية
النظرية النسبية الخاصة
النظرية النسبية العامة
مواضيع عامة في النظرية النسبية
ميكانيكا الكم
الفيزياء الذرية
الفيزياء الجزيئية
الفيزياء النووية
مواضيع عامة في الفيزياء النووية
النشاط الاشعاعي
فيزياء الحالة الصلبة
الموصلات
أشباه الموصلات
العوازل
مواضيع عامة في الفيزياء الصلبة
فيزياء الجوامد
الليزر
أنواع الليزر
بعض تطبيقات الليزر
مواضيع عامة في الليزر
علم الفلك
تاريخ وعلماء علم الفلك
الثقوب السوداء
المجموعة الشمسية
الشمس
كوكب عطارد
كوكب الزهرة
كوكب الأرض
كوكب المريخ
كوكب المشتري
كوكب زحل
كوكب أورانوس
كوكب نبتون
كوكب بلوتو
القمر
كواكب ومواضيع اخرى
مواضيع عامة في علم الفلك
النجوم
البلازما
الألكترونيات
خواص المادة
الطاقة البديلة
الطاقة الشمسية
مواضيع عامة في الطاقة البديلة
المد والجزر
فيزياء الجسيمات
الفيزياء والعلوم الأخرى
الفيزياء الكيميائية
الفيزياء الرياضية
الفيزياء الحيوية
الفيزياء العامة
مواضيع عامة في الفيزياء
تجارب فيزيائية
مصطلحات وتعاريف فيزيائية
وحدات القياس الفيزيائية
طرائف الفيزياء
مواضيع اخرى
Models for Decomposition
المؤلف:
Garnett P. Williams
المصدر:
Chaos Theory Tamed
الجزء والصفحة:
121
11-3-2021
2863
Models for Decomposition
Classical or traditional decomposition is so called because it's the old, established, standard method for breaking down a time series into its four main components (trend, seasonality, cyclicity, and noise). It takes each value of a variable y and numerically identifies the proportions of that value that each of those four components contributes. There are two ways to describe those proportions.
• On an additive basis, that is, in terms of values that are added to yield the observed y (an ''additive model"):
value of time-series variable = trend + seasonality + cyclicity + noise. .......(1)
• On a multiplicative basis, that is, in terms of values that are multiplied to yield the observed y (a "multiplicative model"): value of time-series variable = trend × seasonality × cyclicity × noise.
As with standardization, it's common to first prepare raw time-series data such that each observation represents a "season" (if the basic measurements weren't made that way). So, for example, if we measure a variable each day but want to define a season as three months, we'd add up the appropriate three months' worth of daily measurements and average them to get a single value that embodies that particular season. Then we'd repeat for subsequent three-month seasons.
الاكثر قراءة في الميكانيك
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
