Read More
Date: 15-12-2016
1988
Date: 26-11-2020
1684
Date: 28-12-2016
2078
|
Two-dimensional case
In a standard two-dimensional phase space, all distances lie in a plane (Fig.1a). Ordinarily, you'll have the coordinates (x,y) of any two points for which you need the spanning distance. The distance from one point to the other is the length of the hypotenuse of a right triangle that we draw between the two points and lines parallel to the two axes. We can compute that hypotenuse length (L in Fig. 1a) from the standard Pythagorean theorem. The theorem says that the square of the hypotenuse of a right triangle is the sum of (length of side one)2+(length of side two)2. Taking the square root of both sides of the equation gives the distance between the two points (the length of the hypotenuse L) as ([length of side one]2+[length of side two]2)0.5. If the x and y coordinates for point A are x1, y1 and those for point B are x2, y2 (Fig. 1a), then: length of side one = x coordinate for point B minus x coordinate for point A = x2-x1, and length of side two = y value for point B minus y value for point A = y2-y1.The desired distance (length L of the hypotenuse of the right triangle in Fig .1a) then is:
Figure .1: Distance between two points in phase space.
|
|
تفوقت في الاختبار على الجميع.. فاكهة "خارقة" في عالم التغذية
|
|
|
|
|
أمين عام أوبك: النفط الخام والغاز الطبيعي "هبة من الله"
|
|
|
|
|
قسم شؤون المعارف ينظم دورة عن آليات عمل الفهارس الفنية للموسوعات والكتب لملاكاته
|
|
|