Read More
Date: 11-1-2021
![]()
Date: 2-2-2016
![]()
Date: 13-1-2021
![]() |
A number with prime factorization
![]() |
is called -almost prime if it has a sum of exponents
, i.e., when the prime factor (multiprimality) function
.
The set of -almost primes is denoted
.
The primes correspond to the "1-almost prime" numbers and the 2-almost prime numbers correspond to semiprimes. Conway et al. (2008) propose calling these numbers primes, biprimes, triprimes, and so on.
Formulas for the number of -almost primes less than or equal to
are given by
![]() |
and so on, where is the prime counting function and
is the
th prime (R. G. Wilson V, pers. comm., Feb. 7, 2006; the first of which was discovered independently by E. Noel and G. Panos around Jan. 2005, pers. comm., Jun. 13, 2006).
The following table summarizes the first few -almost primes for small
.
![]() |
OEIS | ![]() |
1 | A000040 | 2, 3, 5, 7, 11, 13, ... |
2 | A001358 | 4, 6, 9, 10, 14, 15, 21, 22, ... |
3 | A014612 | 8, 12, 18, 20, 27, 28, 30, 42, 44, 45, 50, 52, ... |
4 | A014613 | 16, 24, 36, 40, 54, 56, 60, 81, 84, 88, 90, 100, ... |
5 | A014614 | 32, 48, 72, 80, 108, 112, 120, 162, 168, 176, 180, ... |
REFERENCES:
Conway, J. H.; Dietrich, H.; O'Brien, E. A. "Counting Groups: Gnus, Moas, and Other Exotica." Math. Intell. 30, 6-18, 2008.
Sloane, N. J. A. Sequences A000040/M0652, A001358/M3274, A014612, A014613, and A014614 in "The On-Line Encyclopedia of Integer Sequences."
|
|
لخفض ضغط الدم.. دراسة تحدد "تمارين مهمة"
|
|
|
|
|
طال انتظارها.. ميزة جديدة من "واتساب" تعزز الخصوصية
|
|
|
|
|
عوائل الشهداء: العتبة العباسية المقدسة سبّاقة في استذكار شهداء العراق عبر فعالياتها وأنشطتها المختلفة
|
|
|