Read More
Date: 4-11-2019
![]()
Date: 30-12-2019
![]()
Date: 6-1-2020
![]() |
Successive application of Archimedes' recurrence formula gives the Archimedes algorithm, which can be used to provide successive approximations to (pi). The algorithm is also called the Borchardt-Pfaff algorithm. Archimedes obtained the first rigorous approximation of
by circumscribing and inscribing
-gons on a circle. From Archimedes' recurrence formula, the circumferences
and
of the circumscribed and inscribed polygons are
![]() |
![]() |
![]() |
(1) |
![]() |
![]() |
![]() |
(2) |
where
![]() |
(3) |
For a hexagon, and
![]() |
![]() |
![]() |
(4) |
![]() |
![]() |
![]() |
(5) |
where . The first iteration of Archimedes' recurrence formula then gives
![]() |
![]() |
![]() |
(6) |
![]() |
![]() |
![]() |
(7) |
![]() |
![]() |
![]() |
(8) |
Additional iterations do not have simple closed forms, but the numerical approximations for , 1, 2, 3, 4 (corresponding to 6-, 12-, 24-, 48-, and 96-gons) are
![]() |
(9) |
![]() |
(10) |
![]() |
(11) |
![]() |
(12) |
![]() |
(13) |
By taking (a 96-gon) and using strict inequalities to convert irrational bounds to rational bounds at each step, Archimedes obtained the slightly looser result
![]() |
(14) |
REFERENCES:
Miel, G. "Of Calculations Past and Present: The Archimedean Algorithm." Amer. Math. Monthly 90, 17-35, 1983.
Phillips, G. M. "Archimedes in the Complex Plane." Amer. Math. Monthly 91, 108-114, 1984.
|
|
التوتر والسرطان.. علماء يحذرون من "صلة خطيرة"
|
|
|
|
|
مرآة السيارة: مدى دقة عكسها للصورة الصحيحة
|
|
|
|
|
نحو شراكة وطنية متكاملة.. الأمين العام للعتبة الحسينية يبحث مع وكيل وزارة الخارجية آفاق التعاون المؤسسي
|
|
|