Read More
Date: 15-5-2018
1918
Date: 16-4-2019
3424
Date: 16-8-2019
2933
|
For a real positive , the Riemann-Siegel function is defined by
(1) |
This function is sometimes also called the Hardy function or Hardy -function (Karatsuba and Voronin 1992, Borwein et al. 1999). The top plot superposes (thick line) on , where is the Riemann zeta function.
For real , the Riemann-Siegel theta function is defined as
(2) |
|||
(3) |
The function has local extrema at (OEIS A114865 and A114866).
Values such that
(4) |
for , 1, ... are known as Gram points (Edwards 2001, pp. 125-126).
The series expansion of about 0 is given by
(5) |
|||
(6) |
|||
(7) |
(OEIS A067626), and about by
(8) |
(OEIS A036282 and A114721; Edwards 2001, p. 120).
These functions are implemented in the Wolfram Language as RiemannSiegelZ[z] and RiemannSiegelTheta[z].
REFERENCES:
Berry, M. V. "The Riemann-Siegel Expansion for the Zeta Function: High Orders and Remainders." Proc. Roy. Soc. London A 450, 439-462, 1995.
Borwein, J. M.; Bradley, D. M.; and Crandall, R. E. "Computational Strategies for the Riemann Zeta Function." J. Comput. Appl. Math. 121, 247-296, 2000.
Brent, R. P. "On the Zeros of the Riemann Zeta Function in the Critical Strip." Math. Comput. 33, 1361-1372, 1979.
Edwards, H. M. Riemann's Zeta Function. New York: Dover, 2001.
Karatsuba, A. A. and Voronin, S. M. The Riemann Zeta-Function. Hawthorn, NY: de Gruyter, 1992.
Odlyzko, A. M. "The th Zero of the Riemann Zeta Function and 70 Million of Its Neighbors." Preprint.
Sloane, N. J. A. Sequences A036282, A114721, A114865, and A114866 in "The On-Line Encyclopedia of Integer Sequences."
Titchmarsh, E. C. The Theory of the Riemann Zeta Function, 2nd ed. New York: Clarendon Press, 1987.
van de Lune, J.; te Riele, H. J. J.; and Winter, D. T. "On the Zeros of the Riemann Zeta Function in the Critical Strip. IV." Math. Comput. 46, 667-681, 1986.
Vardi, I. Computational Recreations in Mathematica. Reading, MA: Addison-Wesley, p. 143, 1991.
|
|
علامات بسيطة في جسدك قد تنذر بمرض "قاتل"
|
|
|
|
|
أول صور ثلاثية الأبعاد للغدة الزعترية البشرية
|
|
|
|
|
مكتبة أمّ البنين النسويّة تصدر العدد 212 من مجلّة رياض الزهراء (عليها السلام)
|
|
|