Read More
Date: 30-3-2019
![]()
Date: 25-5-2019
![]()
Date: 19-9-2019
![]() |
Following Ramanujan (1913-1914), write
![]() |
(1) |
![]() |
(2) |
These satisfy the equalities
![]() |
![]() |
![]() |
(3) |
![]() |
![]() |
![]() |
(4) |
![]() |
![]() |
![]() |
(5) |
![]() |
![]() |
![]() |
(6) |
and
can be derived using the theory of modular functions and can always be expressed as roots of algebraic equations when
is rational. They are related to the Weber functions.
For simplicity, Ramanujan tabulated for
even and
for
odd. However, (6) allows
and
to be solved for in terms of
and
, giving
![]() |
![]() |
![]() |
(7) |
![]() |
![]() |
![]() |
(8) |
Using (◇) and the above two equations allows to be computed in terms of
or
![]() |
(9) |
In terms of the parameter and complementary parameter
,
![]() |
![]() |
![]() |
(10) |
![]() |
![]() |
![]() |
(11) |
Here,
![]() |
(12) |
is the elliptic lambda function, which gives the value of for which
![]() |
(13) |
Solving for gives
![]() |
![]() |
![]() |
(14) |
![]() |
![]() |
![]() |
(15) |
Solving for and
directly in terms of
then gives
![]() |
![]() |
![]() |
(16) |
![]() |
![]() |
![]() |
(17) |
Analytic values for small values of can be found in Ramanujan (1913-1914) and Borwein and Borwein (1987), and have been compiled by Weisstein. Ramanujan (1913-1914) contains a typographical error labeling
as
.
REFERENCES:
Borwein, J. M. and Borwein, P. B. Pi & the AGM: A Study in Analytic Number Theory and Computational Complexity. New York: Wiley, pp. 139 and 298, 1987.
Ramanujan, S. "Modular Equations and Approximations to ." Quart. J. Pure. Appl. Math. 45, 350-372, 1913-1914.
|
|
منها نحت القوام.. ازدياد إقبال الرجال على عمليات التجميل
|
|
|
|
|
دراسة: الذكاء الاصطناعي يتفوق على البشر في مراقبة القلب
|
|
|
|
|
هيئة الصحة والتعليم الطبي في العتبة الحسينية تحقق تقدما بارزا في تدريب الكوادر الطبية في العراق
|
|
|