Read More
Date: 30-3-2019
1411
Date: 3-6-2019
2279
Date: 30-3-2019
2849
|
A plot in the complex plane of the points
(1) |
where and are the Fresnel integrals (von Seggern 2007, p. 210; Gray 1997, p. 65). The Cornu spiral is also known as the clothoid or Euler's spiral. It was probably first studied by Johann Bernoulli around 1696 (Bernoulli 1967, pp. 1084-1086). A Cornu spiral describes diffraction from the edge of a half-plane.
The quantities and are plotted above.
The slope of the curve's tangent vector (above right figure) is
(2) |
plotted below.
The Cesàro equation for a Cornu spiral is , where is the radius of curvature and the arc length. The torsion is .
Gray (1997) defines a generalization of the Cornu spiral given by parametric equations
(3) |
|||
(4) |
|||
(5) |
|||
(6) |
where is a generalized hypergeometric function.
The arc length, curvature, and tangential angle of this curve are
(7) |
|||
(8) |
|||
(9) |
The Cesàro equation is
(10) |
Dillen (1990) describes a class of "polynomial spirals" for which the curvature is a polynomial function of the arc length. These spirals are a further generalization of the Cornu spiral. The curves plotted above correspond to , , , , , and , respectively.
REFERENCES:
Bernoulli, J. Opera, Tomus Secundus. Brussels, Belgium: Culture er Civilisation, 1967.
Dillen, F. "The Classification of Hypersurfaces of a Euclidean Space with Parallel Higher Fundamental Form." Math. Z. 203, 635-643, 1990.
Gray, A. "Clothoids." §3.7 in Modern Differential Geometry of Curves and Surfaces with Mathematica, 2nd ed. Boca Raton, FL: CRC Press, pp. 64-66, 1997.
Lawrence, J. D. A Catalog of Special Plane Curves. New York: Dover, pp. 190-191, 1972.
von Seggern, D. CRC Standard Curves and Surfaces with Mathematica, 2nd ed. Boca Raton, FL: CRC Press, 2007.
|
|
علامات بسيطة في جسدك قد تنذر بمرض "قاتل"
|
|
|
|
|
أول صور ثلاثية الأبعاد للغدة الزعترية البشرية
|
|
|
|
|
مكتبة أمّ البنين النسويّة تصدر العدد 212 من مجلّة رياض الزهراء (عليها السلام)
|
|
|