Read More
Date: 13-10-2019
![]()
Date: 17-9-2018
![]()
Date: 25-5-2019
![]() |
Define the Airy zeta function for , 3, ... by
![]() |
(1) |
where the sum is over the real (negative) zeros of the Airy function
. This has the closed-form representation
![]() |
(2) |
where is the gamma function,
![]() |
(3) |
where
![]() |
![]() |
![]() |
(4) |
![]() |
![]() |
![]() |
(5) |
and
![]() |
(6) |
(Crandall 1996; Borwein et al. 2004, p. 61).
Surprisingly, defining
![]() |
![]() |
![]() |
(7) |
![]() |
![]() |
![]() |
(8) |
![]() |
![]() |
![]() |
(9) |
gives as a polynomial in
(Borwein et al. 2004, pp. 61-62). The first few such polynomials are
![]() |
![]() |
![]() |
(10) |
![]() |
![]() |
![]() |
(11) |
![]() |
![]() |
![]() |
(12) |
![]() |
![]() |
![]() |
(13) |
![]() |
![]() |
![]() |
(14) |
(OEIS A096631 and A096632). The corresponding numerical values are approximately 0.531457, , 0.0394431,
, and 0.00638927, ....
REFERENCES:
Borwein, J.; Bailey, D.; and Girgensohn, R. Experimentation in Mathematics: Computational Paths to Discovery. Wellesley, MA: A K Peters, pp. 61-62, 2004.
Crandall, R. E. "On the Quantum Zeta Function." J. Phys. A: Math. General 29, 6795-6816, 1996.
Sloane, N. J. A. Sequences A096631 and A096632 in "The On-Line Encyclopedia of Integer Sequences."
|
|
منها نحت القوام.. ازدياد إقبال الرجال على عمليات التجميل
|
|
|
|
|
دراسة: الذكاء الاصطناعي يتفوق على البشر في مراقبة القلب
|
|
|
|
|
هيئة الصحة والتعليم الطبي في العتبة الحسينية تحقق تقدما بارزا في تدريب الكوادر الطبية في العراق
|
|
|