Read More
Date: 17-9-2018
![]()
Date: 6-8-2019
![]()
Date: 19-5-2018
![]() |
Kummer's first formula is
![]() |
(1) |
where is the hypergeometric function with
,
,
, ..., and
is the gamma function. The identity can be written in the more symmetrical form as
![]() |
(2) |
where and
is a positive integer (Bailey 1935, p. 35; Petkovšek et al. 1996; Koepf 1998, p. 32; Hardy 1999, p. 106). If
is a negative integer, the identity takes the form
![]() |
(3) |
(Petkovšek et al. 1996).
Kummer's second formula is
![]() |
![]() |
![]() |
(4) |
![]() |
![]() |
![]() |
(5) |
![]() |
![]() |
![]() |
(6) |
where is a Whittaker function,
is the confluent hypergeometric function of the first kind,
is a Pochhammer symbol,
is a modified Bessel function of the first kind, and
,
,
, ....
REFERENCES:
Bailey, W. N. Generalised Hypergeometric Series. Cambridge, England: Cambridge University Press, 1935.
Hardy, G. H. Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work, 3rd ed. New York: Chelsea, 1999.
Koepf, W. Hypergeometric Summation: An Algorithmic Approach to Summation and Special Function Identities. Braunschweig, Germany: Vieweg, 1998.
Petkovšek, M.; Wilf, H. S.; and Zeilberger, D. A=B. Wellesley, MA: A K Peters, pp. 42-43 and 126, 1996. http://www.cis.upenn.edu/~wilf/AeqB.html.
|
|
التوتر والسرطان.. علماء يحذرون من "صلة خطيرة"
|
|
|
|
|
مرآة السيارة: مدى دقة عكسها للصورة الصحيحة
|
|
|
|
|
هيأة المساءلة والعدالة: مؤتمر ذاكرة الألم يوثّق سنوات القهر التي عاشها العراقيون إبّان الحكم الجائر
|
|
|