Read More
Date: 23-8-2018
5883
Date: 30-3-2019
1827
Date: 21-9-2018
1710
|
Let be the En-function with ,
(1) |
|||
(2) |
Then define the exponential integral by
(3) |
where the retention of the notation is a historical artifact. Then is given by the integral
(4) |
This function is implemented in the Wolfram Language as ExpIntegralEi[x].
The exponential integral is closely related to the incomplete gamma function by
(5) |
Therefore, for real ,
(6) |
The exponential integral of a purely imaginary number can be written
(7) |
for and where and are cosine and sine integral.
Special values include
(8) |
(OEIS A091725).
The real root of the exponential integral occurs at 0.37250741078... (OEIS A091723), which is , where is Soldner's constant (Finch 2003).
The quantity (OEIS A073003) is known as the Gompertz constant.
The limit of the following expression can be given analytically
(9) |
|||
(10) |
(OEIS A091724), where is the Euler-Mascheroni constant.
The Puiseux series of along the positive real axis is given by
(11) |
where the denominators of the coefficients are given by (OEIS A001563; van Heemert 1957, Mundfrom 1994).
REFERENCES:
Arfken, G. Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, pp. 566-568, 1985.
Finch, S. R. "Euler-Gompertz Constant." §6.2 in Mathematical Constants. Cambridge, England: Cambridge University Press, pp. 423-428, 2003.
Harris, F. E. "Spherical Bessel Expansions of Sine, Cosine, and Exponential Integrals." Appl. Numer. Math. 34, 95-98, 2000.
Havil, J. Gamma: Exploring Euler's Constant. Princeton, NJ: Princeton University Press, pp. 105-106, 2003.
Jeffreys, H. and Jeffreys, B. S. "The Exponential and Related Integrals." §15.09 in Methods of Mathematical Physics, 3rd ed.Cambridge, England: Cambridge University Press, pp. 470-472, 1988.
Morse, P. M. and Feshbach, H. Methods of Theoretical Physics, Part I. New York: McGraw-Hill, pp. 434-435, 1953.
Mundfrom, D. J. "A Problem in Permutations: The Game of 'Mousetrap.' " European J. Combin. 15, 555-560, 1994.
Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetterling, W. T. "Exponential Integrals." §6.3 in Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed. Cambridge, England: Cambridge University Press, pp. 215-219, 1992.
Sloane, N. J. A. Sequences A001563/M3545, A073003, A091723, A091724, and A091725 in "The On-Line Encyclopedia of Integer Sequences."
Spanier, J. and Oldham, K. B. "The Exponential Integral Ei() and Related Functions." Ch. 37 in An Atlas of Functions.Washington, DC: Hemisphere, pp. 351-360, 1987.
van Heemert, A. "Cyclic Permutations with Sequences and Related Problems." J. reine angew. Math. 198, 56-72, 1957.
|
|
علامات بسيطة في جسدك قد تنذر بمرض "قاتل"
|
|
|
|
|
أول صور ثلاثية الأبعاد للغدة الزعترية البشرية
|
|
|
|
|
مكتبة أمّ البنين النسويّة تصدر العدد 212 من مجلّة رياض الزهراء (عليها السلام)
|
|
|