Let be the gamma function and
denote a double factorial, then
![]() |
Writing the sums explicitly, Bailey's theorem states
![]() |
REFERENCES:
Bailey, W. N. "The Partial Sum of the Coefficients of the Hypergeometric Series." J. London Math. Soc. 6, 40-41, 1931.
Bailey, W. N. "On One of Ramanujan's Theorems." J. London Math. Soc. 7, 34-36, 1932.
Darling, H. B. C. "On a Proof of One of Ramanujan's Theorems." J. London Math. Soc. 5, 8-9, 1930.
Hardy, G. H. Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work, 3rd ed. New York: Chelsea, pp. 106-107 and 112, 1999.
Hodgkinson, J. "Note on One of Ramanujan's Theorems." J. London Math. Soc. 6, 42-43, 1931.
Watson, G. N. "Theorems Stated by Ramanujan (VIII): Theorems on Divergent Series." J. London Math. Soc. 4, 82-86, 1929.
Watson, G. N. "The Constants of Landau and Lebesgue." Quart. J. Math. (Oxford) 1, 310-318, 1930.
Whipple, F. J. W. "The Sum of the Coefficients of a Hypergeometric Series." J. London Math. Soc. 5, 192, 1930.
|
|
التوتر والسرطان.. علماء يحذرون من "صلة خطيرة"
|
|
|
|
|
مرآة السيارة: مدى دقة عكسها للصورة الصحيحة
|
|
|
|
|
نحو شراكة وطنية متكاملة.. الأمين العام للعتبة الحسينية يبحث مع وكيل وزارة الخارجية آفاق التعاون المؤسسي
|
|
|