Read More
Date: 27-4-2018
![]()
Date: 25-3-2019
![]()
Date: 25-4-2019
![]() |
Let and
,
, ...be the positive roots of
, where
is a Bessel function of the first kind. An expansion of a function in the interval
in terms of Bessel functions of the first kind
![]() |
(1) |
has coefficients found as follows:
![]() |
(2) |
But orthogonality of Bessel function roots gives
![]() |
(3) |
(Bowman 1958, p. 108), so
![]() |
![]() |
![]() |
(4) |
![]() |
![]() |
![]() |
(5) |
and the coefficients are given by
![]() |
(6) |
REFERENCES:
Bowman, F. Introduction to Bessel Functions. New York: Dover, 1958.
Kaplan, W. "Fourier-Bessel Series." §7.15 in Advanced Calculus, 4th ed. Reading, MA: Addison-Wesley, pp. 512-518, 1992.
|
|
التوتر والسرطان.. علماء يحذرون من "صلة خطيرة"
|
|
|
|
|
مرآة السيارة: مدى دقة عكسها للصورة الصحيحة
|
|
|
|
|
نحو شراكة وطنية متكاملة.. الأمين العام للعتبة الحسينية يبحث مع وكيل وزارة الخارجية آفاق التعاون المؤسسي
|
|
|