المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر
تنفيذ وتقييم خطة إعادة الهيكلة (إعداد خطة إعادة الهيكلة1)
2024-11-05
مـعاييـر تحـسيـن الإنـتاجـيـة
2024-11-05
نـسـب الإنـتاجـيـة والغـرض مـنها
2024-11-05
المـقيـاس الكـلـي للإنتاجـيـة
2024-11-05
الإدارة بـمؤشـرات الإنـتاجـيـة (مـبادئ الإنـتـاجـيـة)
2024-11-05
زكاة الفطرة
2024-11-05

اخلاقيات العلاقات العامة
18-8-2022
من تعقيبات صلاة العشاء / دعاء لسعة الرزق.
2023-06-18
المبالغ في القول ليست كذبا
25-6-2019
تطهير المياه النجسة
15-10-2018
شجاعة التراجع
12-6-2018
صفات السيدة الصديقة (عليها السلام)
18-10-2015

Rouché,s Theorem  
  
2322   01:57 مساءً   date: 11-3-2019
Author : Challener, D. and Rubel, L.
Book or Source : "A Converse to Rouché,s Theorem." Amer. Math. Monthly 89
Page and Part : ...


Read More
Date: 4-3-2019 991
Date: 13-2-2019 758
Date: 9-3-2017 1405

Rouché's Theorem

Given two functions f and g analytic in A with gamma a simple loop homotopic to a point in A, if |g(z)|<|f(z)| for all z on gamma, then f and f+g have the same number of roots inside gamma.

A stronger version has been proved by Estermann (1962). The strong version also has a converse, as shown by Challener and Rubel (1982).


REFERENCES:

Challener, D. and Rubel, L. "A Converse to Rouché's Theorem." Amer. Math. Monthly 89, 302-305, 1982.

Estermann, T. Complex Numbers and Functions. London: Oxford University Press, p. 156, 1962.

Knopp, K. Theory of Functions Parts I and II, Two Volumes Bound as One, Part II. New York: Dover, p. 111, 1996.

Krantz, S. G. "Rouché's Theorem." §5.3.1 in Handbook of Complex Variables. Boston, MA: Birkhäuser, p. 74, 1999.

Szegö, G. Orthogonal Polynomials, 4th ed. Providence, RI: Amer. Math. Soc., p. 22, 1975.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.