Read More
Date: 23-2-2019
628
Date: 17-2-2019
747
Date: 19-1-2019
926
|
A transformation of a polynomial equation which is of the form where and are polynomials and does not vanish at a root of . The cubic equation is a special case of such a transformation. Tschirnhaus (1683) showed that a polynomial of degree can be reduced to a form in which the and terms have 0 coefficients. In 1786, E. S. Bring showed that a general quintic equation can be reduced to the form
In 1834, G. B. Jerrard showed that a Tschirnhaus transformation can be used to eliminate the , , and terms for a general polynomial equation of degree .
REFERENCES:
Boyer, C. B. A History of Mathematics. New York: Wiley, pp. 472-473, 1968.
Tschirnhaus. Acta Eruditorum. 1683.
|
|
تفوقت في الاختبار على الجميع.. فاكهة "خارقة" في عالم التغذية
|
|
|
|
|
أمين عام أوبك: النفط الخام والغاز الطبيعي "هبة من الله"
|
|
|
|
|
خدمات متعددة يقدمها قسم الشؤون الخدمية للزائرين
|
|
|