Read More
Date: 19-1-2019
![]()
Date: 21-1-2019
![]()
Date: 4-3-2017
![]() |
A transformation of a polynomial equation which is of the form
where
and
are polynomials and
does not vanish at a root of
. The cubic equation is a special case of such a transformation. Tschirnhaus (1683) showed that a polynomial of degree
can be reduced to a form in which the
and
terms have 0 coefficients. In 1786, E. S. Bring showed that a general quintic equation can be reduced to the form
![]() |
In 1834, G. B. Jerrard showed that a Tschirnhaus transformation can be used to eliminate the ,
, and
terms for a general polynomial equation of degree
.
REFERENCES:
Boyer, C. B. A History of Mathematics. New York: Wiley, pp. 472-473, 1968.
Tschirnhaus. Acta Eruditorum. 1683.
|
|
دراسة: حفنة من الجوز يوميا تحميك من سرطان القولون
|
|
|
|
|
تنشيط أول مفاعل ملح منصهر يستعمل الثوريوم في العالم.. سباق "الأرنب والسلحفاة"
|
|
|
|
|
لتعزيز التواصل مع الزائرات الأجنبيات : العتبة العلويّة المقدّسة تُطلق دورة لتعليم اللغة الإنجليزية لخادمات القسم النسويّ
|
|
|