تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Orthogonal Polynomials
المؤلف:
Abramowitz, M. and Stegun, I. A
المصدر:
"Orthogonal Polynomials." Ch. 22 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover,
الجزء والصفحة:
...
13-2-2019
18375
Orthogonal polynomials are classes of polynomials {p_n(x)}" src="http://mathworld.wolfram.com/images/equations/OrthogonalPolynomials/Inline1.gif" style="height:15px; width:43px" /> defined over a range
that obey an orthogonalityrelation
![]() |
(1) |
where is a weighting function and
is the Kronecker delta. If
, then the polynomials are not only orthogonal, but orthonormal.
Orthogonal polynomials have very useful properties in the solution of mathematical and physical problems. Just as Fourier series provide a convenient method of expanding a periodic function in a series of linearly independent terms, orthogonal polynomials provide a natural way to solve, expand, and interpret solutions to many types of important differential equations. Orthogonal polynomials are especially easy to generate using Gram-Schmidt orthonormalization.
A table of common orthogonal polynomials is given below, where is the weighting function and
![]() |
(2) |
(Abramowitz and Stegun 1972, pp. 774-775).
polynomial | interval | ![]() |
![]() |
Chebyshev polynomial of the first kind | ![]() |
![]() |
|
Chebyshev polynomial of the second kind | ![]() |
![]() |
![]() |
Gegenbauer polynomial | ![]() |
![]() |
![]() |
Hermite polynomial | ![]() |
![]() |
![]() |
Jacobi polynomial | ![]() |
![]() |
![]() |
Laguerre polynomial | ![]() |
![]() |
1 |
generalized Laguerre polynomial | ![]() |
![]() |
![]() |
Legendre polynomial | ![]() |
1 | ![]() |
In the above table,
![]() |
(3) |
where is a gamma function.
The roots of orthogonal polynomials possess many rather surprising and useful properties. For instance, let be the roots of the
with
and
. Then each interval
for
, 1, ...,
contains exactly one root of
. Between two roots of
there is at least one root of
for
.
Let be an arbitrary real constant, then the polynomial
![]() |
(4) |
has distinct real roots. If
(
), these roots lie in the interior of
, with the exception of the greatest (least) root which lies in
only for
![]() |
(5) |
The following decomposition into partial fractions holds
![]() |
(6) |
where {xi_nu}" src="http://mathworld.wolfram.com/images/equations/OrthogonalPolynomials/Inline49.gif" style="height:15px; width:23px" /> are the roots of
and
![]() |
![]() |
![]() |
(7) |
![]() |
![]() |
![]() |
(8) |
Another interesting property is obtained by letting {p_n(x)}" src="http://mathworld.wolfram.com/images/equations/OrthogonalPolynomials/Inline57.gif" style="height:15px; width:43px" /> be the orthonormal set of polynomials associated with the distribution
on
. Then the convergents
of the continued fraction
![]() |
(9) |
are given by
![]() |
![]() |
![]() |
(10) |
![]() |
![]() |
![]() |
(11) |
![]() |
![]() |
![]() |
(12) |
where , 1, ... and
![]() |
(13) |
Furthermore, the roots of the orthogonal polynomials associated with the distribution
on the interval
are real and distinct and are located in the interior of the interval
.
REFERENCES:
Abramowitz, M. and Stegun, I. A. (Eds.). "Orthogonal Polynomials." Ch. 22 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 771-802, 1972.
Arfken, G. "Orthogonal Polynomials." Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, pp. 520-521, 1985.
Chihara, T. S. An Introduction to Orthogonal Polynomials. New York: Gordon and Breach, 1978.
Gautschi, W.; Golub, G. H.; and Opfer, G. (Eds.) Applications and Computation of Orthogonal Polynomials, Conference at the Mathematical Research Institute Oberwolfach, Germany, March 22-28, 1998. Basel, Switzerland: Birkhäuser, 1999.
Iyanaga, S. and Kawada, Y. (Eds.). "Systems of Orthogonal Functions." Appendix A, Table 20 in Encyclopedic Dictionary of Mathematics. Cambridge, MA: MIT Press, p. 1477, 1980.
Koekoek, R. and Swarttouw, R. F. The Askey-Scheme of Hypergeometric Orthogonal Polynomials and its -Analogue. Delft, Netherlands: Technische Universiteit Delft, Faculty of Technical Mathematics and Informatics Report 98-17, 1-168, 1998.
Nikiforov, A. F.; Uvarov, V. B.; and Suslov, S. S. Classical Orthogonal Polynomials of a Discrete Variable. New York: Springer-Verlag, 1992.
Sansone, G. Orthogonal Functions. New York: Dover, 1991.
Szegö, G. Orthogonal Polynomials, 4th ed. Providence, RI: Amer. Math. Soc., pp. 44-47 and 54-55, 1975.