 
					
					
						Irreducible Polynomial					
				 
				
					
						 المؤلف:  
						Marsh, R
						 المؤلف:  
						Marsh, R					
					
						 المصدر:  
						Tables of Irreducible Polynomials of GF(2) through Degree 19. Washington, DC: U. S. Dept. Commerce, 1957.
						 المصدر:  
						Tables of Irreducible Polynomials of GF(2) through Degree 19. Washington, DC: U. S. Dept. Commerce, 1957.					
					
						 الجزء والصفحة:  
						...
						 الجزء والصفحة:  
						...					
					
					
						 21-1-2019
						21-1-2019
					
					
						 1514
						1514					
				 
				
				
				
				
				
				
				
				
				
			 
			
			
				
				Irreducible Polynomial
 
A polynomial is said to be irreducible if it cannot be factored into nontrivial polynomials over the same field.
For example, in the field of rational polynomials ![Q[x]](http://mathworld.wolfram.com/images/equations/IrreduciblePolynomial/Inline1.gif) (i.e., polynomials
 (i.e., polynomials  with rational coefficients),
 with rational coefficients),  is said to be irreducible if there do not exist two nonconstant polynomials
 is said to be irreducible if there do not exist two nonconstant polynomials  and
 and  in
 in  with rational coefficients such that
 with rational coefficients such that
(Nagell 1951, p. 160). Similarly, in the finite field GF(2),  is irreducible, but
 is irreducible, but  is not, since
 is not, since (mod 2).
 (mod 2).
Irreducible polynomial checking is implemented in the Wolfram Language as IrreduciblePolynomialQ[poly].
In general, the number of irreducible polynomials of degree  over the finite field GF(
 over the finite field GF( ) is given by
) is given by
where  is the Möbius function.
 is the Möbius function.
The number of irreducible polynomials of degree  over GF(2) is equal to the number of
 over GF(2) is equal to the number of  -bead fixed aperiodicnecklaces of two colors and the number of binary Lyndon words of length
-bead fixed aperiodicnecklaces of two colors and the number of binary Lyndon words of length  . The first few numbers of irreducible polynomial (mod 2) for
. The first few numbers of irreducible polynomial (mod 2) for  , 2, ... are 2, 1, 2, 3, 6, 9, 18, ... (OEIS A001037). The following table lists the irreducible polynomials (mod 2) of degrees 1 through 5.
, 2, ... are 2, 1, 2, 3, 6, 9, 18, ... (OEIS A001037). The following table lists the irreducible polynomials (mod 2) of degrees 1 through 5.
	
		
			|  | irreducible polynomials | 
		
			| 1 |  ,  | 
		
			| 2 |  | 
		
			| 3 |  ,  | 
		
			| 4 |  ,  ,  | 
		
			| 5 |  ,  ,  ,  ,  ,  | 
	
The possible polynomial orders of  th degree irreducible polynomials over the finite field GF(2) listed in ascending order are given by 1; 3; 7; 5, 15; 31; 9, 21, 63; 127; 17, 51, 85, 255; 73, 511; ... (OEIS A059912).
th degree irreducible polynomials over the finite field GF(2) listed in ascending order are given by 1; 3; 7; 5, 15; 31; 9, 21, 63; 127; 17, 51, 85, 255; 73, 511; ... (OEIS A059912).
 
REFERENCES:
Marsh, R. Tables of Irreducible Polynomials of GF(2) through Degree 19. Washington, DC: U. S. Dept. Commerce, 1957.
Nagell, T. "Irreducibility of the Cyclotomic Polynomial." §47 in Introduction to Number Theory. New York: Wiley, pp. 160-164, 1951.
Ruskey, F. "Information on Primitive and Irreducible Polynomials." http://www.theory.csc.uvic.ca/~cos/inf/neck/PolyInfo.html.
Sloane, N. J. A. Sequences A001037/M0116 and A059912 in "The On-Line Encyclopedia of Integer Sequences."
Sloane, N. J. A. and Plouffe, S. Figure M0564 in The Encyclopedia of Integer Sequences. San Diego: Academic Press, 1995.
				
				
					
					 الاكثر قراءة في  مواضيع عامة في الجبر
					 الاكثر قراءة في  مواضيع عامة في الجبر 					
					
				 
				
				
					
					 اخر الاخبار
						اخر الاخبار
					
					
						
							  اخبار العتبة العباسية المقدسة