Read More
Date: 19-5-2018
![]()
Date: 14-10-2019
![]()
Date: 30-3-2019
![]() |
The fractional derivative of of order
(if it exists) can be defined in terms of the fractional integral
as
![]() |
(1) |
where is an integer
, where
is the ceiling function. The semiderivative corresponds to
.
The fractional derivative of the function is given by
![]() |
![]() |
![]() |
(2) |
![]() |
![]() |
![]() |
(3) |
![]() |
![]() |
![]() |
(4) |
![]() |
![]() |
![]() |
(5) |
![]() |
![]() |
![]() |
(6) |
for . The fractional derivative of the constant function
is then given by
![]() |
![]() |
![]() |
(7) |
![]() |
![]() |
![]() |
(8) |
The fractional derivate of the Et-function is given by
![]() |
(9) |
for .
It is always true that, for ,
![]() |
(10) |
but not always true that
![]() |
(11) |
A fractional integral can also be similarly defined. The study of fractional derivatives and integrals is called fractional calculus.
REFERENCES:
Kilbas, A. A.; Srivastava, H. M.; and Trujiilo, J. J. Theory and Applications of Fractional Differential Equations. Amsterdam, Netherlands: Elsevier, 2006.
Love, E. R. "Fractional Derivatives of Imaginary Order." J. London Math. Soc. 3, 241-259, 1971.
Miller, K. S. "Derivatives of Noninteger Order." Math. Mag. 68, 183-192, 1995.
Oldham, K. B. and Spanier, J. The Fractional Calculus: Integrations and Differentiations of Arbitrary Order. New York: Academic Press, 1974.
Samko, S. G.; Kilbas, A. A.; and Marichev, O. I. Fractional Integrals and Derivatives. Yverdon, Switzerland: Gordon and Breach, 1993.
|
|
منها نحت القوام.. ازدياد إقبال الرجال على عمليات التجميل
|
|
|
|
|
دراسة: الذكاء الاصطناعي يتفوق على البشر في مراقبة القلب
|
|
|
|
|
هيئة الصحة والتعليم الطبي في العتبة الحسينية تحقق تقدما بارزا في تدريب الكوادر الطبية في العراق
|
|
|