المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
تـشكيـل اتـجاهات المـستـهلك والعوامـل المؤثـرة عليـها
2024-11-27
النـماذج النـظريـة لاتـجاهـات المـستـهلـك
2024-11-27
{اصبروا وصابروا ورابطوا }
2024-11-27
الله لا يضيع اجر عامل
2024-11-27
ذكر الله
2024-11-27
الاختبار في ذبل الأموال والأنفس
2024-11-27

مقدمة الأدب للزمخشري
17-4-2019
لا تستح من إعطاء القليل
14-2-2021
زيارة عاشوراء الغير المشهورة
2024-07-16
DNA Repair : Double-strand break repair
25-12-2021
الحروف اللثوية
19-3-2022
الاختصاص التشريعي وأولوية قانون المحافظات غير المنتظمة بإقليم
7-8-2017

Homogeneous Ordinary Differential Equation  
  
937   01:58 مساءً   date: 13-6-2018
Author : Boyce, W. E. and DiPrima, R. C
Book or Source : Elementary Differential Equations and Boundary Value Problems, 8th ed. New York: Wiley
Page and Part : pp. 49-50


Read More
Date: 3-7-2018 541
Date: 5-7-2018 881
Date: 23-12-2018 1056

Homogeneous Ordinary Differential Equation

A linear ordinary differential equation of order n is said to be homogeneous if it is of the form

(1)

where   , i.e., if all the terms are proportional to a derivative of y (or y itself) and there is no term that contains a function of x alone.

However, there is also another entirely different meaning for a first-order ordinary differential equation. Such an equation is said to be homogeneous if it can be written in the form

 (dy)/(dx)=F(y/x).

(2)

Such equations can be solved in closed form by the change of variables u=y/x which transforms the equation into the separable equation

 (dx)/x=(du)/(F(u)-u).

 


REFERENCES:

Boyce, W. E. and DiPrima, R. C. Elementary Differential Equations and Boundary Value Problems, 8th ed. New York: Wiley, pp. 49-50, 2004.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.