1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : الرياضيات التطبيقية :

Some Other Loans

المؤلف:  W.D. Wallis

المصدر:  Mathematics in the Real World

الجزء والصفحة:  220-221

11-2-2016

1426

We shall look at two forms of loan that are calculated using simple interest, but involve higher interest payments than you might expect.

The first example is the add-on loan. In an add-on loan you add the whole amount of simple interest to the principal at the beginning of the loan period. If the principal is $P, the interest is R%, and the period is n years, then the total to be paid back is $P(1+ nR/100 ).

Very often these loans are for short periods, and in those cases the interest is high.

Sample Problem 1.1 What is your monthly payment on an add-on loan if you borrow $12,000 over 5 years at 8% per year?

Solution. Simple interest is $960 per year, so the total (simple) interest for 5 years is $4,800. Therefore the total to be paid is $16,800. There are 60 monthly payments, so your monthly payment will be $16,800/60, which is $280.

The second example is a discounted loan. In a discounted loan you subtract the interest from the amount borrowed. Suppose your loan says you will borrow $P at an interest rate of R%, and the period is n years. Instead of $P you receive $P(1 − Rn/100). For example, if your loan has principal $12,000 over 5 years at 8%, you only receive

                                   $12,000×(1−.4) = $7,200.

At the end of the period you repay the original principal, $12,000 in the example.

These loans are sometimes used by auto sales companies, for lease agreements with an option to buy.

Sample Problem 1.2 You need to pay $12,000. What will be your payments for a 5-year discounted loan at 8% per year?

Solution. If you need $12,000 then your principal will be $A where

                             A×(1−.4) = 12,000

so $A = $(12,000/0.6) = 20,000. Your monthly payments total $20,000 over 60 months, so they equal $333.33 per month, to the nearest cent. (In actual fact, you would probably pay $333.34 per month, with a last payment of $332.94, or maybe $334 per month, with the last payment adjusted down.)

Observe the difference between the payments in the two Sample Problems. This is not an isolated example. An add-on loan is always better than a discounted loan at the same (non-zero) interest rate.

To see this, suppose you need $100. If you borrow $100 for n years at R% interest, using an add-on loan, you eventually pay $100(1+ nR/100 ) = $(100+nR). In order to obtain $100 using a discounted loan at R%, your “principal” is $P, where    P(1−nR/100) = 100.

Suppose the discounted loan were as good a deal as the add-on. Then

                     P ≤ 100+nR. Then

100 = P(1−nR/100) ≤ (100+nR)(1−nR/100)=(100+nR)(100−nR)/100

    from which

               10,000 ≤ (100+nR)(100−nR) = 10,000−n2R2.

This would mean n2R2 ≤ 0. This is never true.

In any case, for a discounted loan or an add-on loan to be worthwhile, the interest rate must be low. They are better for short-term loans.

One can compare compound interest loans with these other sorts of loans. For example, an add-on loan of $1,000 at 5% interest for a 4-year period requires monthly payments of $25. If you took out a loan for 4 years at 6% compound interest, and found your monthly payment to be $25, your principal was $P,

 Where

So you could have borrowed $64.50 more under compound interest at 6%, for the same repayment. In other words, the APY for the 4-year 5% add-on loan is greater than 6%.

 

 

EN

تصفح الموقع بالشكل العمودي