تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Investments: Loans
المؤلف:
W.D. Wallis
المصدر:
Mathematics in the Real World
الجزء والصفحة:
215-217
11-2-2016
1636
You do not normally wait until the end of a loan period to pay back a loan. The usual practice is to pay equal amounts each month (or each week or . . . ). Another situation in which equal deposits are made is the periodic savings account, such as a Christmas club or retirement account, where a fixed amount is deposited into savings each period.
Regular Savings
Consider a periodic savings account. Suppose you deposit $D each month. The interest each month is M%; write m = M/100. Assume the account is empty to start, and you pay in for n months. (Often n = 11 or 12, because people use these accounts to save for vacations or Christmas shopping.)
The calculations to find the amount at the end of the n-th month might start:
This soon becomes complicated. An easier way is to calculate the effect of putting each new payment in a new bank account. The total in all the accounts at the end of n months will be the required amount.
Payment 1 draws interest for n months, so the amount in that account at the end is $D(1 + m)n; payment 2 draws interest for n − 1 months, so the amount in that account at the end is $D(1+m)n−1. The total of accounts 1 and 2 is
We call this amount the accumulation.
Sample Problem 1.1 At the beginning of each month you put $100 into an account that pays 6% annual interest. How much have you accumulated at the end of the year?
Solution. 6% annual interest is .5% per month. So m = .005,n = 12,D = 100, and you get
$100(1.00513−1.005)/.005
= $100(1.066986−1.005)×200
= $20000(0.061986)
= $1239.72
Some investment funds are set up so that you make your payment at the end of the payment period, rather than the beginning. In these cases it is usual to add the last payment to the accumulation, even though it accrues no interest. In that case the accumulation is
For example, in a Christmas club, you might make your first payment on January 31st and withdraw the money late in November. There are ten payments. If the annual interest is again 6%, your accumulation is