1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : الرياضيات التطبيقية :

Simple Check Digits

المؤلف:  W.D. Wallis

المصدر:  Mathematics in the Real World

الجزء والصفحة:  133-134

11-2-2016

1475

In this chapter we look at some examples of how identification numbers such as Social Security Numbers, Zip Codes and Bank Account Numbers are made up,  and how and why they are used. We see these numbers all the time. For example,  when you go to a supermarket, the string of black lines printed on a packet, called a barcode, represents a string of numbers. The cash register scans the bars and converts them into a string of numbers; the corresponding prices are kept in a file and are looked up automatically.

Many other things in everyday life are also represented by codewords—strings of letters or numbers which identify a bank account, a book, an airline ticket, and so on. When these are copied or transmitted there is always the possibility of errors.

The simplest method to avoid errors is a check digit. For example, a Visa or American Express traveler’s check has a 10-digit identifying code, such as 2411903043. The first nine digits identify the check; the tenth is chosen so that the sum of all ten digits is divisible by 9. In the example, 2 + 4 + 1 + 1 + 9 + 0 + 3+0+4+3 = 27 = 3×9. If the first nine digits were 524135324, we observe that 5+2+4+1+3+5+3+2+4= 29; the next multiple of 9 is 29+7= 36 = 4×9, so the check digit would have to be 7, and the code is 5241353247. If the check sum is wrong, the number was wrong. This simple method detects most errors consisting of one wrong symbol (but not when a 0 is substituted for a 9 or vice versa; in some systems of this sort, no 9s are ever used). Of course, if you get two digits wrong, the check will not always work, and it never helps when you interchange two digits.

A modification of this method is used in US Postal Service money orders. The money order has an 11-digit number; the first ten digits identify the money order,  and the 11th is a check digit. Again, divisors on division by 9 are involved. But in this case, after the sum of the first ten digits is found and divided by 9, the check digit equals the remainder. For example, if the identification number started 2411403043,  then 2+4+1+1+4+0+3+0+4+3= 22 = 2×9+4, so the last digit would be 4.

Sample Problem 1.1 A USPS money order has number 5_2413532404, where the second digit has been rubbed off. What was the second digit?

Solution. Represent the second digit by x. The sum of the first ten digits is 29 + x. When this is divided by 9, the remainder must be 4, so 29 + x is one of 13,22,31,40,... But 0 ≤ x ≤ 9, so the only possibility is 31, and x must equal 2.

 

These systems will detect some errors, but by no means all. For example,  one of the most common errors we make is to write digits in the wrong order,  especially to exchange two adjacent numbers. If you were to swap two digits on a traveler’s check number, the error would not be noticed. The money order number system is slightly better; if you were to exchange the last digit with another, the error would probably be caught. But these methods do not detect all errors by any means.

 

EN

تصفح الموقع بالشكل العمودي