تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Animal Populations
المؤلف:
W.D. Wallis
المصدر:
Mathematics in the Real World
الجزء والصفحة:
229
11-2-2016
1532
Another example of exponential growth is the growth of an animal population.
Given two animals (male and female), we know how frequently they will reproduce on average, and how many offspring will be produced. These numbers are not precise, but with large numbers the errors average out. If the animals reproduce an average of three offspring per year, and on average two die per year, the end result is as if the number of animals grows by 50% annually.
Of course, the animals do not all reproduce at the same time. The process is more like continuous compounding. In the example, the appropriate model is continuous compounding with an APY of 50%.
This model is more accurate with shorter breeding periods. When studying microscopic creatures, that reproduce within hours, reasonable predictions can be made of the population growth over periods of shorter than a day. For insects, a few days is often long enough for an accurate model. With humans, we need decades or even centuries. The “continuous compounding” model of a human population is used only for predicting the population movement in large cities, states or whole countries, because population fluctuations, caused by economic factors, the availability of highways, and so on, interfere with the model.
Sample Problem 1.1 A fish population doubles every year. At present it is 10,000. Approximately when will it reach 100,000? When will it reach 1,000,000?
Solution. After n years, the total population is 10,000×2n, so the questions are, “when is 2n = 10?” and “when is 2n = 100?”
Now 23 = 8,24 = 16,26 = 64,27 = 128, so the answers are
100,000: during the 4th year;
1,000,000: during the 7th year.