تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Inflation: The Consumer Price Index
المؤلف:
W.D. Wallis
المصدر:
Mathematics in the Real World
الجزء والصفحة:
228-229
11-2-2016
1740
There is a tendency for the purchasing power of money to decrease over time; this is called inflation. Sometimes the rate of inflation will change rapidly, but often it stays roughly constant for several years. Inflation follows the same model as continuous compounding.
For example, let’s suppose inflation rate is 5% from 2012 to 2017. If something cost $100 in January 2012, then 5 years later, in January 2017, we expect it to cost $100×(1.05)5 = $127.63. Of course, individual items do not increase at a uniform rate, but this is a useful approximate guide to the cost of living.
As inflation is not constant, governments often calculate tables to show the purchasing power of today’s dollar in earlier years. In the United States, the Consumer Price Index (CPI) is calculated each month by finding the cost of a standard set of items (food, housing, vehicles, and so on). There are in fact several CPIs constructed. We shall always refer to the CPI-U, an index that reflects the cost of living in urban areas (about 80% of America). There is also a CPI-W, for wageearners, and there are other indices. Tables of the CPI-U are available online at
http://stats.bls.gov/cpi/#tables.
The total CPI is divided by the average for 1982–1984 (the base period), and multiplied by 100. For example, the CPI for February 2006 was 198.7, so a collection of goods that cost $198.70 in February 2006 would have cost an average of about $100 in the base period. The average for a year is also published; the average for 1988 was 118.3; the figures for May and June were 118.0 and 118.5 respectively.
This can be used to compare two different years. The CPI for June 2002 was 179.9. The ratio 179.9/118.5 = 1.518... provides a comparison between June 2002 and June 1988 prices: if something cost $1,000 in 1988, our best guess is that it would cost about $1,518 in 2002. These figures are approximate, because the prices of different items do not increase at the same rate. However, it is reasonable to say “the cost of living was about 50% higher in 2002 than in 1988.” A speaker in 2002 might say, “A dollar today is worth about two-thirds of what it was worth in 1988.”
Suppose the cost of a major item at time A is $XA. Suppose the CPI at time A is CA, and at time B it is CB. Then your estimate of the cost at time B is
(CB /CA) XA.
Sample Problem 1.1 A house cost $150,000 in June 1988. What would you expect a similar house to have cost in February 2006?
Solution. If the house cost $150,000 in mid-1988, it is equivalent to a house that cost 198.7 118.5 × $150,000 = $251,518.99 in February 2006. Your realistic answer might be “about $250,000.”