

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي


الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية


الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق


الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات


الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل


المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات


التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات


علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان
Polynomial Factorization
المؤلف:
Lenstra, A. K.; Lenstra, H. W.; and Lovász
المصدر:
"Factoring Polynomials with Rational Coefficients." Math. Ann. 261
الجزء والصفحة:
...
13-2-2019
3028
Polynomial Factorization
A factor of a polynomial
of degree
is a polynomial
of degree less than
which can be multiplied by another polynomial
of degree less than
to yield
, i.e., a polynomial
such that
![]() |
For example, since
![]() |
both
and
are factors of
.
Polynomial factorization can be performed in the Wolfram Language using Factor[poly]. Factorization over an algebraic number field is implemented as Factor[poly, Extension -> ext].
The coefficients of factor polynomials are often required to be real numbers or integers but could, in general, be complex numbers. The fundamental theorem of algebra states that a polynomial
of degree
has
values
(some of which are possibly degenerate) for which
. Such values are called polynomial roots.
The average number of factors of a polynomial
of degree
with integer coefficients
in the range
has been considered by Schinzel (1976), Pinner and Vaaler (1996), Bérczes and Hajdu (1998), and Dubickas (1999).
REFERENCES:
Abbott, J.; Shoup, V.; and Zimmermann, P. "Factorization in
: The Searching Phase." In Proceedings of the 2000 international Symposium on Symbolic and Algebraic Computation (St. Andrews, Scotland) (Ed. C. Traverso). New York: ACM, pp. 1-7, 2000.
Bérczes, A. and Hajdu, L. "On a Problem of P. Turán Concerning Irreducible Polynomials." In Number Theory. Diophantine, Computational and Algebraic Aspects. Proceedings of the International Conference held in Eger, July 29-August 2, 1996. (Ed. K. Győry, A. Pethő, and V. T. Sós). Berlin: de Gruyter, pp. 95-100, 1998.
Dubickas, A. "On a Polynomial with Large Number [sic] of Irreducible Factors." In Number theory in progress, Vol. 1. Diophantine Problems and Polynomials. Proceedings of the International Conference on Number Theory held in Honor of Andrzej Schinzel on his 60th Birthday in Zakopane-Kościelisko, June 30-July 9, 1997 (Ed. K. Győry, H. Iwaniec, and J. Urbanowicz). Berlin: de Gruyter, pp. 103-110, 1999.
Kaltofen, E. "Polynomial Factorization." In Computer Algebra: Symbolic and Algebraic Computation, 2nd ed. (Ed. B. Buchberger, G. E.Collins, R. Loos, and R. Albrecht). Vienna: Springer-Verlag, pp. 95-113, 1983.
Lenstra, A. K.; Lenstra, H. W.; and Lovász, L. "Factoring Polynomials with Rational Coefficients." Math. Ann. 261, 515-534, 1982.
Pinner, C. G. and Vaaler, J. D. "The Number of Irreducible Factors of a Polynomial. II." Acta Arith. 78, 125-142, 1996.
Schinzel, A. "On the Number of Irreducible Factors of a Polynomial." In Topics in Number Theory. Proceedings of the Colloquium held in Debrecen from 3-7 October, 1974. (Ed. P. Turán). Amsterdam, Netherlands: North Holland, pp. 305-314, 1976.
Séroul, R. "Factoring a Polynomial with Integral Coefficients." §10.14 in Programming for Mathematicians. Berlin: Springer-Verlag, pp. 286-295, 2000.
Trott, M. The Mathematica GuideBook for Symbolics. New York: Springer-Verlag, 2006. http://www.mathematicaguidebooks.org/.
van Hoeij, M. "Factoring Polynomials and the Knapsack Problem." Preprint.http://www.math.fsu.edu/~aluffi/archive/paper124.ps.gz.
الاكثر قراءة في مواضيع عامة في الجبر
اخر الاخبار
اخبار العتبة العباسية المقدسة
الآخبار الصحية



قسم الشؤون الفكرية يصدر كتاباً يوثق تاريخ السدانة في العتبة العباسية المقدسة
"المهمة".. إصدار قصصي يوثّق القصص الفائزة في مسابقة فتوى الدفاع المقدسة للقصة القصيرة
(نوافذ).. إصدار أدبي يوثق القصص الفائزة في مسابقة الإمام العسكري (عليه السلام)