المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الادارة و الاقتصاد
عدد المواضيع في هذا القسم 7174 موضوعاً
المحاسبة
ادارة الاعمال
علوم مالية و مصرفية
الاقتصاد
الأحصاء

Untitled Document
أبحث عن شيء أخر
تنفيذ وتقييم خطة إعادة الهيكلة (إعداد خطة إعادة الهيكلة1)
2024-11-05
مـعاييـر تحـسيـن الإنـتاجـيـة
2024-11-05
نـسـب الإنـتاجـيـة والغـرض مـنها
2024-11-05
المـقيـاس الكـلـي للإنتاجـيـة
2024-11-05
الإدارة بـمؤشـرات الإنـتاجـيـة (مـبادئ الإنـتـاجـيـة)
2024-11-05
زكاة الفطرة
2024-11-05

انتاج غاز الأمونيا باستخدام اليد (للتفاعل) :
13-2-2017
دعاؤه (عليه السلام) عند مدح الناس له
20-4-2016
تبديل الأسماء القبيحة
15-1-2021
معنى كلمة هزّ‌
2-1-2016
جعفر بن كمال الدين ( 1014 ـ 1091، 1088 هـ)
1-7-2016
موجزات إرشادية
15-12-2019


مقاييس النزعة المركزية (الوسط الحسابي)   
  
66599   03:37 مساءً   التاريخ: 16-4-2018
المؤلف : د.شرف الدين خليل
الكتاب أو المصدر : الاحصاء الوصفي
الجزء والصفحة : ص31-36
القسم : الادارة و الاقتصاد / الأحصاء / البيانات الأحصائية /


أقرأ أيضاً
التاريخ: 16-4-2018 38706
التاريخ: 19-4-2018 44612
التاريخ: 19-4-2018 19416
التاريخ: 24-2-2018 16334

مقاييس النزعة المركزية  Central Tendency  :

في كثير من النواحي التطبيقية يكون الباحث في حاجة الى حساب بعض المؤشرات التي يمكن الاعتماد عليها في وصف الظاهرة من حيث القيمة التي تتوسط القيم ، ومن حيث التعرف على مدى تجانس القيم التي يأخذها المتغير، وايضاً ما اذا كان هناك قيم شاذة او لا .

والاعتماد على العرض البياني وحده لا يكفي ، لذا يتناول هذا الفصل والذي يليه عرض بعض المقاييس الاحصائية والتي يمكن من خلالها التعرف على خصائص الظاهرة محل البحث  وكذلك امكانية مقارنة ظاهرتين او اكثر، ومن اهم هذه المقاييس مقاييس النزعة المركزية والتشتت . 

تسمى مقاييس النزعة المركزية بمقاييس الموضع او المتوسطات ، وهي  القيم التي تتركز القيم حولها ، ومن هذه المقاييس ؛ الوسط الحسابي ، المنوال ، الوسيط ، الوسط الهندسي ، والوسط التوافقي ، الرباعيات ، وفيما يلي عرض لأهم هذه المقاييس .

 

الوسط الحسابي   Arithmetic mean  : من أهم مقاييس الترعة المركزية ، وأكثرها استخداما في النواحي التطبيقية ، ويمكن حسابه للبيانات المبوبة وغير المبوبة ، كما يلي :

أولا: الوسط الحسابي للبيانات غير المبوبة: يعرف الوسط الحسابي بشكل عام على أنه مجموع القيم مقسوما على عددها . فإذا كان لدينا n من القيم ، ويرمز لها بالرمز  فإن الوسط الحسابي لهذه القيم ، ونرمز له بالرمز يحسب بالمعادلة التالية :

حيث يدل الرمز  على المجموع .

مثال(3-1)فيما يلي درجات8 طلاب في مقرر122إحصاء تطبيقي 40، 36، 40، 35، 37، 42، 32، 34 .

والمطلوب إيجاد الوسط الحسابي لدرجة الطالب في الامتحان .

الحل لإيجاد الوسط الحسابي للدرجات تطبق المعادلة السابقة كما يلي:

أي أن الوسط الحسابي لدرجة الطالب في اختبار مقرر122 إحصاء يساوي 37 درجة.

ثانيا: الوسط الحسابي للبيانات المبوبة: من المعلوم أن القيم الأصلية ، لا يمكن معرفتها من جدول التوزيع التكراري ، حيث أن هذه القيم موضوعة في شكل فئات ، ولذا يتم التعبير عن كل قيمة من القيم التي تقع داخل حدود الفئة بمركز هذه الفئة ، ومن ثم يؤخذ في الاعتبار أن مركز الفئة هو القيمة التقديرية لكل مفردة تقع في هذه الفئة.

فإذا كانت k هي عدد الفئات ، وكانت  هي مراكز هذه الفئات،  هي التكرارات ، فإن الوسط الحسابي يحسب بالمعادلة التالية:

مثال ( 3-2) الجدول التالي يعرض توزيع 40 تلميذ حسب أوزانهم.

 

والمطلوب إيجاد الوسط الحسابي.

الحل: لحساب الوسط الحسابي باستخدام المعادلة السابقة يتم إتباع الخطوات التالية :

1- إيجاد مجموع التكرارات

2- حساب مراكز الفئات x

3- ضرب مركز الفئة في التكرار المناظر له وحساب المجموع 

4- حساب الوسط الحسابي بتطبيق المعادلة.

إذا الوسط الحسابي لوزن التلميذ هو :

أي أن متوسط وزن التلميذ يساوي 37.4kg

خصائص الوسط الحسابي: يتصف الوسط الحسابي بعدد من الخصائص ، ومن هذه الخصائص ما يلي :

1- الوسط الحسابي للمقدار الثابت يساوى الثابت نفسه ، أي أنه إذا كانت قيم x هي 

         

ومثال على ذلك ، لو اخترنا مجموعة من 5 طلاب ، ووجدنا أن كل طالب وزنه 63 كيلوجرام فإن متوسط وزن الطالب في هذه المجموعة هو : 

2- مجموع انحرافات القيم عن وسطها الحسابي يساوى صفرا ، ويعبر عن هذه الخاصية بالمعادلة:

ويمكن التحقق من هذه الخاصية باستخدام بيانات مثال ( 3-1) نجد أن درجات الطلاب هي :

3- إذا أضيف مقدار ثابت إلى كل قيمة من القيم ، فإن الوسط الحسابي للقيم المعدلة (بعد الإضافة) يساوى الوسط الحسابي للقيم الأصلية (قبل الإضافة) مضافا إليها هذا المقدار الثابت .

فإذا كانت القيم هي  وتم إضافة مقدار ثابت (a) إلى كل قيمة من القيم ، ونرمز للقيم الجديدة بالرمز y       

       حيث أن   هو الوسط الحسابي للقيم الجديدة ، ويمكن التحقق من هذه الخاصية باستخدام بيانات مثال رقم ( 3-1)
إذا قرر المصحح إضافة 5 درجات لكل طالب ، فإن الوسط الحسابي للدرجات المعدلة يصبح قيمته 42=(5+37) ، والجدول التالي يبين ذلك .

  

4- إذا ضرب مقدار ثابت(a) في كل قيمة من القيم ، فإن الوسط الحسابي للقيم المعدلة (القيم الناتجة بعد الضرب) يساوي الوسط الحسابي للقيم الأصلية (القيم بعد التعديل) مضروبا في هذا المقدار الثابت .

أي أنه إذا كان y = a x ويكون الوسط الحسابي للقيم الجديدة y هو :

5- مجموع مربعات انحرافات القيم عن وسطها الحسابي أقل ما يمكن ، أي أن:

ثالثا: الوسط الحسابي المرجح: في بعض الأحيان يكون لكل قيمة من قيم المتغير أهمية نسبية تسمى أوزن ، أو ترجيحات ،وعدم أخذ هذه الأوزان في الاعتبار عند حساب الوسط الحسابي ، تكون القيمة المعبرة عن الوسط الحسابي غير دقيقة ، فمثلا لو أخذنا خمسة طلاب ، وسجلنا درجات هؤلاء الطلاب في مقرر الإحصاء التطبيقي ، وعدد ساعات الاستذكار في الأسبوع

مزايا وعيوب الوسط الحسابي :

 يتميز الوسط الحسابي بالمزايا التالية :

 ــ أنه سهل الحساب . ·

 ــ يأخذ في الاعتبار كل القيم . ·

 ــ أنه أكثر المقاييس استخداما وفهما . ·

ومن عيوبه :

 ــ أنه يتأثر بالقيم الشاذة والمتطرفة . ·

 ــ يصعب حسابه في حالة البيانات الوصفية . ·

 ــ يصعب حسابه في حالة الجداول التكرارية المفتوحة .




علم قديم كقدم المجتمع البشري حيث ارتبط منذ نشأته بعمليات العد التي كانت تجريها الدولة في العصور الوسطى لحساب أعداد جيوشها والضرائب التي تجبى من المزارعين وجمع المعلومات عن الأراضي التي تسيطر عليها الدولة وغيرها. ثم تطور علم الإحصاء منذ القرن السابع عشر حيث شهد ولادة الإحصاء الحيوي vital statistic وكذلك تكونت أساسيات نظرية الاحتمالات probability theory والتي تعتبر العمود الفقري لعلم الإحصاء ثم نظرية المباريات game theory. فأصبح يهتم بالمعلومات والبيانات – ويهدف إلى تجميعها وتبويبها وتنظيمها وتحليلها واستخلاص النتائج منها بل وتعميم نتائجها – واستخدامها في اتخاذ القرارات ، وأدى التقدم المذهل في تكنولوجيا المعلومات واستخدام الحاسبات الآلية إلى مساعدة الدارسين والباحثين ومتخذي القرارات في الوصول إلى درجات عالية ومستويات متقدمة من التحليل ووصف الواقع ومتابعته ثم إلى التنبؤ بالمستقبل .





علم قديم كقدم المجتمع البشري حيث ارتبط منذ نشأته بعمليات العد التي كانت تجريها الدولة في العصور الوسطى لحساب أعداد جيوشها والضرائب التي تجبى من المزارعين وجمع المعلومات عن الأراضي التي تسيطر عليها الدولة وغيرها. ثم تطور علم الإحصاء منذ القرن السابع عشر حيث شهد ولادة الإحصاء الحيوي vital statistic وكذلك تكونت أساسيات نظرية الاحتمالات probability theory والتي تعتبر العمود الفقري لعلم الإحصاء ثم نظرية المباريات game theory. فأصبح يهتم بالمعلومات والبيانات – ويهدف إلى تجميعها وتبويبها وتنظيمها وتحليلها واستخلاص النتائج منها بل وتعميم نتائجها – واستخدامها في اتخاذ القرارات ، وأدى التقدم المذهل في تكنولوجيا المعلومات واستخدام الحاسبات الآلية إلى مساعدة الدارسين والباحثين ومتخذي القرارات في الوصول إلى درجات عالية ومستويات متقدمة من التحليل ووصف الواقع ومتابعته ثم إلى التنبؤ بالمستقبل .





لقد مرت الإدارة المالية بعدة تطورات حيث انتقلت من الدراسات الوصفية إلى الدراسات العملية التي تخضع لمعايير علمية دقيقة، ومن حقل كان يهتم بالبحث عن مصادر التمويل فقط إلى حقل يهتم بإدارة الأصول وتوجيه المصادر المالية المتاحة إلى مجالات الاستخدام الأفضل، ومن التحليل الخارجي للمؤسسة إلى التركيز على عملية اتخاذ القرار داخل المؤسسة ، فأصبح علم يدرس النفقات العامة والإيرادات العامة وتوجيهها من خلال برنامج معين يوضع لفترة محددة، بهدف تحقيق أغراض الدولة الاقتصادية و الاجتماعية والسياسية و تكمن أهمية المالية العامة في أنها تعد المرآة العاكسة لحالة الاقتصاد وظروفه في دولة ما .و اقامة المشاريع حيث يعتمد نجاح المشاريع الاقتصادية على إتباع الطرق العلمية في إدارتها. و تعد الإدارة المالية بمثابة وظيفة مالية مهمتها إدارة رأس المال المستثمر لتحقيق أقصى ربحية ممكنة، أي الاستخدام الأمثل للموارد المالية و إدارتها بغية تحقيق أهداف المشروع.