Read More
Date: 9-6-2021
1579
Date: 2-7-2017
1456
Date: 24-6-2017
1759
|
Let Q, R and S be unital rings, let M be a Q-R-bimodule, and let N be an R-S-bimodule. Then M is a right R-module and N is a left R-module. We can therefore form the tensor product M ⊗R N of M and N over the ring R.
This tensor product is an Abelian group under the operation of addition.
Let q ∈ Q and r ∈ R. The definition of bimodules ensures that (qx)r = q(xr) for all x ∈ M. Let Lq: M ×N → M ⊗R N be the function defined such that Lq(x, y) = (qx) ⊗ y for all x ∈ M and y ∈ N. Then the function f is Z-bilinear. Moreover
Lq(xr, y) = (q(xr)) ⊗ y = ((qx)r) ⊗ y = (qx) ⊗ (ry) = Lq(x, ry).
for all x ∈ M and y ∈ N. It follows from Lemma 8.14 that there exists a group homomorphism λq: M ⊗R N → M ⊗R N, where λq(x⊗y) = (qx)⊗y for all x ∈ M and y ∈ N. Similarly, given any element s of the ring S, there exists a group homomorphism ρs: M ⊗R N → M ⊗R N, where λs(x⊗y) = x⊗(ys).
We define qα = λq(α) and αs = ρs(α) for all α ∈ M ⊗R N. One can check that M ⊗R N is a Q-S-bimodule with respect to these operations of left multiplication by elements of Q and right multiplication by elements of S. Moreover, given any Q-S-bimodule P, and given any Z-bilinear function f: M × N → P that satisfies
f(qx, y) = qf(x, y), f(xr, y) = f(x, ry), f(x, ys) = f(x, y)s
for all x ∈ M, y ∈ N, q ∈ Q, r ∈ R and s ∈ S, there exists a unique Q-S bimodule homomorphism ϕ: M ⊗R N → P such that f(x, y) = ϕ(x ⊗ y) for all x ∈ M and y ∈ N.
This constuction generalizes the definition and universal property of the tensor product of modules over a unital commutative ring R, in view of the fact that any module over a unital commutative ring R may be regarded as an R-R-bimodule.
|
|
علامات بسيطة في جسدك قد تنذر بمرض "قاتل"
|
|
|
|
|
أول صور ثلاثية الأبعاد للغدة الزعترية البشرية
|
|
|
|
|
مدرسة دار العلم.. صرح علميّ متميز في كربلاء لنشر علوم أهل البيت (عليهم السلام)
|
|
|