x
هدف البحث
بحث في العناوين
بحث في اسماء الكتب
بحث في اسماء المؤلفين
اختر القسم
موافق
تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Product Topology
المؤلف: Cullen, H. F
المصدر: Introduction to General Topology. Boston, MA: Heath
الجزء والصفحة: ...
14-8-2021
3209
The topology on the Cartesian product of two topological spaces whose open sets are the unions of subsets , where and are open subsets of and , respectively.
This definition extends in a natural way to the Cartesian product of any finite number of topological spaces. The product topology of
where is the real line with the Euclidean topology, coincides with the Euclidean topology of the Euclidean space .
In the definition of product topology of , where is any set, the open sets are the unions of subsets , where is an open subset of with the additional condition that for all but finitely many indices (this is automatically fulfilled if is a finite set). The reason for this choice of open sets is that these are the least needed to make the projection onto the th factor continuous for all indices . Admitting all products of open sets would give rise to a larger topology (strictly larger if is infinite), called the box topology.
The product topology is also called Tychonoff topology, but this should not cause any confusion with the notion of Tychonoff space, which has a completely different meaning.
REFERENCES:
Cullen, H. F. Introduction to General Topology. Boston, MA: Heath, pp. 65-91, 1968.
Joshi, K. D. "Product Topology." §8.2 in Introduction to General Topology. New Delhi, India: Wiley, pp. 196-203, 1983.
McCarty, G. "Tychonoff for Two." In Topology, an Introduction with Application to Topological Groups. New York: McGraw-Hill, pp. 154-157, 1967.
Willard, S. "Product Spaces, Weak Topologies." §8 in General Topology. Reading, MA: Addison-Wesley, pp. 52-59, 1970.