تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Modules-Tensor Products of Modules over a Unital Commutative Ring
المؤلف:
David R. Wilkins
المصدر:
Algebraic Topology
الجزء والصفحة:
90-93
2-7-2017
1954
Definition Let R be a unital commutative ring, and let let M and N and P be R-modules. A function f: M × N → P is said to be R-bilinear if
f(x1 + x2, y) = f(x1, y) + f(x2, y),
f(x, y1 + y2) = f(x, y1) + f(x, y2),
and
f(rx, y) = f(x, ry) = rf(x, y)
for all x, x1, x2 ∈ M, y, y1, y2 ∈ N and r ∈ R.
Proposition 1.1 Let R be a unital commutative ring, and let M and N be modules over R. Then there exists an R-module M ⊗R N and an R-bilinear function jM×N : M × N → M ⊗R N, where M ⊗R N and jM×N satisfy the following universal property:
given any R-module P, and given any R-bilinear function f: M × N → P, there exists a unique R-module homomorphism θ: M ⊗R N → P such that f = θ ◦ jM×N .
Proof Let FR(M × N) be the free R-module on the set M × N, and let iM×N : M ×N → FR(M ×N) be the natural embedding of M ×N in FR(M ×N). Then, given any R-module P, and given any function f: M × N → P, there exists a unique R-module homomorphism ϕ: FR(M × N) → P such that ϕ ◦ iM×N = f (Proposition 1.1)in(Construction of Free Modules).
Let K be the submodule of FR(M × N) generated by the elements
iM×N (x1 + x2, y) − iM×N (x1, y) − iM×N (x2, y),
iM×N (x, y1 + y2) − iM×N (x, y1) − iM×N (x, y2),
iM×N (rx, y) − riM×N (x, y),
iM×N (x, ry) − riM×N (x, y)
for all x, x1, x2 ∈ M, y, y1, y2 ∈ N and r ∈ R. Also let M ⊗R N be the quotient module FR(M×N)/K, let π: FR(M×N) → M⊗RN be the quotient homomorphism, and let jM×N : M×N → M⊗RN be the composition function π ◦ iM×N . Then
jM×N (x1 + x2, y) − jM×N (x1, y) − jM×N (x2, y)
= π(iM×N (x1 + x2, y) − iM×N (x1, y) − iM×N (x2, y)) = 0
for all x1, x2 ∈ M and y ∈ N. Similarly
jM×N (x, y1 + y2, y) − jM×N (x, y1) − jM×N (x, y2) = 0
for all x ∈ M and y1, y2 ∈ N, and
jM×N (rx, y) − rjM×N (x, y) = π(iM×N (rx, y) − riM×N (x, y)) = 0,
jM×N (x, ry) − rjM×N (x, y) = π(iM×N (x, ry) − riM×N (x, y)) = 0
for all x ∈ M, y ∈ N and r ∈ R. It follows that
jM×N (x1 + x2, y) = jM×N (x1, y) + jM×N (x2, y),
jM×N (x, y1 + y2) = jM×N (x, y1) + jM×N (x, y2),
and
jM×N (rx, y) = jM×N (x, ry) = rjM×N (x, y)
for all x, x1, x2 ∈ M, y, y1, y2 ∈ N and r ∈ R. Thus jM×N : M ×N → M ⊗R N is an R-bilinear function.
Now let P be an R-module, and let f: M × N → P be an R-bilinear function. Then there is a unique R-module homomorphism ϕ: FR(M ×N) →P such that f = ϕ ◦ iM×N . Then
ϕ(iM×N (x1 + x2, y) − iM×N (x1, y) − iM×N (x2, y))
= f(x1 + x2, y) − f(x1, y) − f(x2, y) = 0
for all x1, x2 ∈ M and y ∈ N. Similarly
ϕ(iM×N (x, y1 + y2) − iM×N (x, y1) − iM×N (x, y2)) = 0
for all x ∈ M and y1, y2 ∈ N, and
ϕ(iM×N (rx, y) − riM×N (x, y)) = f(rx, y) − rf(x, y) = 0,
ϕ(iM×N (x, ry) − riM×N (x, y)) = f(x, ry) − rf(x, y) = 0
for all x ∈ M, y ∈ N and r ∈ R. Thus the submodule K of FR(M × N) is generated by elements of ker ϕ, and therefore K ⊂ ker ϕ. It follows that ϕ: FR(M×N) → P induces a unique R-module homomorphism θ: M⊗RN → P, where M ⊗R N = FR(M × N)/K, such that ϕ = θ ◦ π. Then
θ ◦ jM×N = θ ◦ π ◦ iM×N = ϕ ◦ iM×N = f.
Moreover is ψ: M ⊗R N → P is any R-module homomorphism satisfying ψ ◦ jM×N = f then ψ ◦ π ◦ iM×N = f. The uniqueness of the homomorphism ϕ: FR(M × N) → P then ensures that ψ ◦ π = ϕ = θ ◦ π. But then ψ = θ, because the quotient homomorphism π: FR(M ×N) → M ⊗R N is surjective. Thus the homomorphism θ is uniquely determined, as required.
Let M and N be modules over a unital commutative ring R. The module M ⊗R N constructed as described in the proof of Proposition 1.1 is referred to as the tensor product M ⊗R N of the modules M and N over the ring R.
Given x ∈ M and y ∈ N, we denote by x⊗y the image j(x, y) of (x, y) under the bilinear function jM×N : M × N → M ⊗R N. We call this element thetensor product of the elements x and y. Then
(x1 + x2) ⊗ y = x1 ⊗ y + x2 ⊗ y, x ⊗ (y1 + y2) = x ⊗ y1 + x ⊗ y2,
and
(rx) ⊗ y = x ⊗ (ry) = r(x ⊗ y)
for all x, x1, x2 ∈ M, y, y1, y2 ∈ N and r ∈ R. The universal property characterizing tensor products described in Proposition 1.1 then yields the following result.
Corollary 1.2 Let M and N be modules over a unital commutative ring R, let M ⊗R N be the tensor product of M and N over R. Then, given any Rmodule P, and given any R-bilinear function f: M × N → P, there exists a unique R-module homomorphism θ: M⊗RN → P such that θ(x⊗y) = f(x, y) for all x ∈ M and y ∈ N.
The following corollary shows that the universal property stated in Proposition 1.1 characterizes tensor products up to isomorphism.
Corollary 1.3 Let M, N and T be modules over a unital commutative ring R, let M ⊗R N be the tensor product of M and N, and let k: M ×N → T be an R-bilinear function. Suppose that k: M ×N → T satisfies the universal property characterizing tensor products so that, given any R-module P, and given any R-bilinear function f: M ×N → P, there exists a unique R-module homomorphism ψ: T → P such that f = ψ◦k. Then T ≅ M ⊗R N, and there is a unique R-isomorphism ϕ: M ⊗R N → T such that k(x, y) = ϕ(x ⊗R y) for all x ∈ M and y ∈ N.
Proof It follows from Corollary 8.8 that there exists a unique R-module homomorphism ϕ: M ⊗R N → T such that k(x, y) = ϕ(x ⊗ y) for all x ∈ M and y ∈ N. Also universal property satisfied by the bilinear function k: M × N → T ensures that there exists a unique R-module homomorphism ψ: T → M ⊗R N such that x ⊗ y = ψ(k(x, y)) for all x ∈ M and y ∈ N.
Then ψ(ϕ(x ⊗ y)) = x ⊗ y for all x ∈ M and y ∈ M. But the universal property characterizing the tensor product ensures that any homomorphism from M ×R N to itself is determined uniquely by its action on elements of the form x ⊗ y, where x ∈ M and y ∈ N. It follows that ψ ◦ ϕ is the identity automorphism of M ⊗R N. Similarly ϕ◦ψ is the identity automorphism of T.
It follows that ϕ: M⊗RN → T is an isomorphism of R-modules whose inverse is ψ: T → M ⊗R N. The isomorphism ϕ has the required properties.
Corollary 1.4 Let M be a module over a unital commutative ring R, and let κ: R ⊗R M → M be the R-module homomorphism defined such that κ(r ⊗ x) = rx for all r ∈ R and x ∈ M. Then κ is an isomorphism, and thus R ⊗R M ≅ M.
Proof Let P be an R-module, and let f: R × M → P be an R-bilinear function. Let ψ: M → P be defined such that ψ(x) = f(1R, x) for all x ∈ M, where 1R denotes the identity element of the ring R. Then ψ is an R-module homomorphism. Moreover f(r, x) = rf(1R, x) = f(1R, rx) = ψ(rx) for all x ∈ M and r ∈ R. Thus f = ψ ◦ k, where k: R × M → M is the R-bilinear function defined such that k(r, x) = rx for all r ∈ R and x ∈ M. The result therefore follows on applying Corollary 1.3.
Corollary 1.5 Let M, M`, N and N` be modules over a unital commutative ring R, and let ϕ: M → M`and ψ: N → N` be R-module homomorphisms.
Then ϕ and ψ induce an R-module homomorphism ϕ⊗ψ: M ⊗R N → M` ⊗RN` , where (ϕ ⊗ ψ)(m ⊗ n) = ϕ(m) ⊗ ψ(n) for all m ∈ M and n ∈ N.
Proof The result follows immediately on applying Corollary 1.2 to the bilinear function from M × N to M0 ⊗R N` that sends (m, n) to ϕ(m) ⊗ ψ(n) for all m ∈ M and n ∈ N.
الاكثر قراءة في التبلوجيا
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
