تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Homology Calculations-The Homology Groups of the Boundary of a Simplex
المؤلف:
David R. Wilkins
المصدر:
Algebraic Topology
الجزء والصفحة:
79-80
1-7-2017
1494
Proposition 1.1 Let K be the simplicial complex consisting of all the proper faces of an (n + 1)-dimensional simplex σ, where n > 0. Then
H0(K) ≅ Z, Hn(K) ≅ Z, Hq(K) = 0 when q ≠0, n.
Proof Let M be the simplicial complex consisting of the (n+1)-dimensional simplex σ, together with all its faces. Then K is a subcomplex of M, and Cq(K) = Cq(M) when q ≤ n.
It follows from Proposition 1.4in(Simplicial Homology Groups) that H0(M) ≅ Z and Hq(M) = 0 when q > 0. (Here 0 denotes the zero group.) Now Zq(K) = Zq(M) when q ≤ n, and Bq(K) = Bq(M) when q < n. It follows that Hq(K) = Hq(M) when q < n. Thus H0(K) ≅Z and Hq(K) = 0 when 0 < q < n. Also Hq(K) = 0 when q > n, since the simplicial complex K is of dimension n. Thus, to determine the homology of the complex K, it only remains to find Hn(K).
Let the (n+1)-dimensional simplex σ have vertices v0, v1, . . . , vn+1. Then
Cn+1(M) = {n〈v0, v1, . . . , vn+1〉 : n ∈ Z}.
and therefore Bn(M) = {nz : n ∈ Z}, where
z = ∂n+1 (〈v0, v1, . . . , vn+1〉).
Now Hn(M) = 0 . It follows that Zn(M) = Bn(M). But Zn(K) = Zm(M), since Cn(K) = Cn(M) and the definition of the boundary homomorphism on Cn(K) is consistent with the definition of the boundary homomorphism on Cn(M). Also Bn(K) = 0, because the simplicial complex K is of dimension n, and therefore has no non-zero n-boundaries. It follows that
Hn(K)≅Zn(K) = Zn(M) = Bn(M) ≅ Z.
Indeed Hn(K) = {n[z] : n ∈ Z}, where [z] denotes the homology class of the n-cycle z of K defined above.
Remark Note that the n-cycle z is an n-cycle of the simplicial complex K, since it is a linear combination, with integer coefficients, of oriented nsimplices of K. The n-cycle z is an n-boundary of the large simplicial complex M. However it is not an n-boundary of K. Indeed the n-dimensional simplicial complex K has no non-zero (n + 1)-chains, therefore has no nonzero n-boundaries. Therefore z represents a non-zero homology class [z] of Hn(K). This homology class generates the homology group Hn(K).
Remark The boundary of a 1-simplex consists of two points. Thus if K is the simplicial complex representing the boundary of a 1-simplex then H0(K) ≅ Z ⊕ IZ ,and Hq(K) = 0 when q > 0.
الاكثر قراءة في التبلوجيا
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
