المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
القيمة الغذائية للثوم Garlic
2024-11-20
العيوب الفسيولوجية التي تصيب الثوم
2024-11-20
التربة المناسبة لزراعة الثوم
2024-11-20
البنجر (الشوندر) Garden Beet (من الزراعة الى الحصاد)
2024-11-20
الصحافة العسكرية ووظائفها
2024-11-19
الصحافة العسكرية
2024-11-19


Covering Maps and Discontinuous Group Actions-Lifting of Continuous Maps Into Covering Spaces  
  
1876   02:29 مساءً   date: 24-6-2017
Author : David R. Wilkins
Book or Source : Algebraic Topology
Page and Part : ...


Read More
Date: 15-5-2021 1435
Date: 22-5-2021 1226
Date: 3-8-2021 1361

Let p: X˜ → X be a covering map over a topological space X. Let f:Z → X be a continuous map from some topological space Z into X. If the topological space Z is locally path-connected then one can formulate a criterion to determine whether or not there exists a map f˜:Z → X˜ for which p ◦f˜ = f  . This criterion is stated in terms of the homomorphisms of fundamental groups induced by the continuous maps f:Z → X and p: X˜ → X. We shall use this criterion in order to derive a necessary and sufficient condition for two covering maps over a connected and locally path-connected topological space to be topologically equivalent. We shall also study the deck transformations of a covering space over some connected and locally path-connected topological space.

Lemma 1.18 Let p: X˜ → X be a covering map over a topological space X,  let Z be a locally path-connected topological space, and let g:Z → X˜ be a function from Z to X˜. Suppose that p ◦ g:Z → X is continuous, and that g ◦ γ: [0, 1] → X˜ is continuous for all paths γ: [0, 1] → Z in Z. Then the function g is continuous.

Proof Let f:Z → X be the composition function p◦g. Then the function f is a continuous map from Z to X.

Let z be a point of Z. Then there exists an open neighbourhood V of f(z)  in X which is evenly covered by the map p. The inverse image p−1 (V ) of V in the covering space X˜ is a disjoint union of open sets, each of which is mapped homeomorphically onto V by p. One of these open sets contains the point g(z), since f(z) = p(g(z)). Let us denote this open set by V˜ . Then g(z) ∈ V˜ , and V˜ is mapped homeomorphically onto V by the map p. Let s: V → V˜ denote the inverse of the restriction (p|V˜ ): V˜ → V of the covering map p to V˜ . Then the map s is continuous, and p(s(v)) = v for all v ∈ V .

Now f−1 (V ) is an open set in Z containing the point z. But the topological space Z is locally path-connected. Therefore there exists a path-connected open set Nz in Z such that z ∈ Nz and Nz ⊂ f−1 (V ). We claim that g(Nz) ⊂ V˜ . Let z΄ be a point of Nz. Then there exists a path γ: [0, 1] → Nz in N from z to z΄ . Moreover f(γ([0, 1])) ⊂ V . Let η: [0, 1] → X˜ be the path in X˜ defined such that η(t) = s(f(γ(t))) for all t ∈ [0, 1]. Then η([0, 1]) ⊂ V˜ , and η is the unique path in X˜ for which η(0) = g(z) and p◦η = f ◦γ. But the composition function g ◦γ is a path in X˜, g(γ(0)) = g(z) and p◦g ◦γ = f ◦γ.

Therefore g ◦ γ = η. It follows that g(γ([0, 1])) ⊂ V˜ , and therefore g(z΄) ∈ V˜ .

This proves that g(Nz) ⊂ V˜ . Moreover g(z΄) = s(f(z΄)) for all z΄∈ Nz, and therefore the restriction g|Nz: Nz → X˜ of the function g to the open set Nz is continuous.

We have now shown that, given any point z of Z, there exists an open set Nz in Z such that z ∈ Nz and the restriction g|Nz of g:Z → X˜ to Nz is continuous. It follows from this that the function g is continuous on Z.

Indeed let U be an open set in X˜. Then g−1(U) ∩ Nz is an open set for all z ∈ Z, since g|Nz is continuous. Moreover g−1 (U) is the union of the open sets g−1(U) ∩ Nz as z ranges over all points of Z. It follows that g−1  (U) is itself an open set in Z. Thus g:Z → X˜ is continuous, as required.

Theorem1.19 Let p: X˜ → X be a covering map over a topological space X, and let f:Z → X be a continuous map from some topological space Z into X. Suppose that the topological space Z is both connected and locally path-connected. Suppose also that

                         f#1(Z, z0)) ⊂ p#1(X˜, x˜0)),

where z0 and x˜0 are points of Z and X˜ respectively which satisfy f(z0) = p(x˜0). Then there exists a unique continuous map f˜:Z → X˜ for which f˜ (z0) = x˜0 and p ◦f˜ = f.

Proof Let P denote the set of all ordered pairs (α, ρ), where α: [0, 1] → Z is a path in Z with α(0) = z0, ρ: [0, 1] → X˜ is a path in X˜ with ρ(0) = x˜0,  and f ◦ α = p ◦ ρ. We claim that there is a well-defined function f˜:Z → X˜ characterized by the property that f˜ (α(1)) = ρ(1) for all (α, ρ) ∈ P.

The topological space Z is path-connected, by Proposition 1.14. Therefore, given any point z of Z, there exists a path α in Z from z0 to z. Moreover it follows from the Path Lifting Theorem that, given any path α in Z from z0 to z there exists a unique path ρ in X˜ for which ρ(0) = x ˜0 and p ◦ ρ = f ◦α. It follows that, given any element z of Z, there exists some element (α, ρ) of P for which α(1) = z.

Let (α, ρ) and (β, σ) be elements of P. Suppose that α(1) = β(1). Then  [(f ◦α).(f ◦ β)−1] = f#[α.β−1]. But f#1(Z, z0)) ⊂ p#1(X˜, x˜0). Therefore  [(f ◦ α).(f ◦ β)−1] ∈ p#1(X˜, x˜0)). It follows from Corollary 1.5 that ρ(1) =σ(1). We conclude therefore that if (α, ρ) and (β, σ) are elements of P, and if α(1) = β(1), then ρ(1) = σ(1). This establishes the existence of a unique function f˜:Z → X˜ characterized by the property that f˜ (α(1)) = ρ(1) for all  (α, ρ) ∈ P. Now p(ρ(1)) = f(α(1)) for all (α, ρ) ∈ P, and therefore p◦f˜ = f.

Also f˜(z0) = ˜x0, since (εz0, εx˜0 ) ∈ P, where εz0 denotes the constant path in Z based at z0 and εx˜0 denotes the constant path in X˜ based at x˜0. Thus it only remains to show that the map f˜:Z → X˜ is continuous. In view of Lemma 1.18, it suffices to show that f˜ maps paths in Z to paths in X˜.

Let γ: [0, 1] → Z be a path in Z. We claim that the composition function f˜◦ γ is continuous, and is thus a path in X˜. Let α be a path in Z from z0 to γ(0), let ρ: [0, 1] → X˜ be the unique path in X˜ satisfying ρ(0) = x˜0 and p ◦ ρ = f ◦ α, and let σ: [0, 1] → X˜ be the unique path in X˜ satisfying σ(0) = ρ(1) and p ◦ σ = f ◦ γ. Now, for each τ ∈ [0, 1], there is a path ατ : [0, 1] → Z from z0 to γ(τ ) defined such that

Then f ◦ ατ (t) = p ◦ ρτ (t) for all t ∈ [0, 1] where ρτ : [0, 1] → X˜ is the path in X˜ from x˜0 to σ(τ ) defined such that

It follows that (ατ , ρτ ) ∈ P, for all τ ∈ [0, 1], and therefore f˜ (γ(τ )) = f˜ (ατ (1)) = ρτ (1) = σ(τ )  for all τ ∈ [0, 1]. Thus f˜ ◦ γ = σ. We conclude that f˜◦ γ is a path in X˜ for any path γ in Z. It then follows from Lemma 1.18 that the function f˜:Z → X˜ is a continuous map from Z to X˜ with the required properties.

Corollary 1.20 Let p: X˜ → X be a covering map over a topological space X,  and let f:Z → X be a continuous map from some topological space Z into X.

Suppose that the covering space X˜ is path-connected and that the topological space Z is both connected and locally path-connected. Let z0 and w0 be points of Z and X˜ respectively for which f(z0) = p(w0). Then there exists a map f˜:Z → X˜ satisfying p ◦ f˜ = f if and only if there exists a subgroup H of π1(X, p(w0)) such that H is conjugate to p#1(X, w˜0)) and f#1(Z, z0)) ⊂ H .

Proof Suppose that there exists a map f˜:Z → X˜ for which p ◦f˜ = f.

Then f#1(Z, z0)) ⊂ H, where H = p#1(X˜,f˜(z0))). Moreover it follows from Lemma 1.7 that the subgroup H of π1(X, p(w0)) is conjugate to p#(π1(X, w˜0)) in π1(X, p(w0)).

Conversely suppose that f#1(Z, z0)) ⊂ H, where H is a subgroup of π1(X, p(w0)) that is conjugate to p#1(X, w˜0)). It follows from Lemma 1.7 that there exists a point x˜ of X˜ for which p(˜x) = p(w0) and p#1(X ˜, x˜)) = H. Then

                        f# 1(Z, z0)) ⊂ p#1(X˜, x˜)).

It then follows from Theorem 1.19 that there exists a continuous map f˜:Z → X˜ for which p ◦ f˜= f, as required.

 

 

 

 

 

 




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.