المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
الخرشوف Artichoke (من الزراعة الى الحصاد)
2024-11-24
ميعاد زراعة الجزر
2024-11-24
أثر التأثير الاسترجاعي على المناخ The Effects of Feedback on Climate
2024-11-24
عمليات الخدمة اللازمة للجزر
2024-11-24
العوامل الجوية المناسبة لزراعة الجزر
2024-11-24
الجزر Carrot (من الزراعة الى الحصاد)
2024-11-24

قبس من سنن لباس المصلي
22-8-2017
Notable Reactions with potassium
18-11-2018
شرائط وجوب زكاة الذهب والفضة.
14-1-2016
الشيخ أحمد بن الشيخ عبد الله بن حسن البلادي.
23-8-2020
مصادر دراسة موضوع الحديث الصحفي - ج) المصادر غير الرسمية (الشخصية)
20-4-2022
الهجرة الى الحبشة
21-5-2021

Covering Maps and Discontinuous Group Actions-Covering Maps and Induced Homomorphisms of the Fundamental Group  
  
1275   11:26 صباحاً   date: 21-6-2017
Author : David R. Wilkins
Book or Source : Algebraic Topology
Page and Part : ...


Read More
Date: 5-8-2021 1599
Date: 15-7-2021 1528
Date: 28-9-2016 1822

Proposition 1.1 Let p: X˜ → X be a covering map over a topological space X, let α: [0, 1] → X and β: [0, 1] → X be paths in X, where α(0) = β(0) and α(1) = β(1), and let                         α˜: [0, 1] → X˜ and β˜: [0, 1] → X˜ be paths in X˜ such that p ◦ α˜ = α and p ◦ β˜ = β. Suppose that α˜(0) = β˜(0) and that α ≃ β rel {0, 1}.

Then α˜(1) = β˜(1) and α˜ ≃ β˜ rel {0, 1}.

Proof Let x0 and x1 be the points of X given by

                x0 = α(0) = β(0), x1 = α(1) = β(1).

Now α ≅β rel {0, 1}, and therefore there exists a homotopy F: [0, 1]×[0, 1] → X such that F(t, 0) = α(t) and F(t, 1) = β(t) for all t ∈ [0, 1], F(0, τ ) = x0 and F(1, τ ) = x1 for all τ ∈         [0, 1].

It then follows from the Monodromy Theorem (The Monodromy Theorem)that there exists a continuous map G: [0, 1] × [0, 1] → X˜ such that p ◦ G = F and G(0, 0) = α˜(0). Then p(G(0, τ )) = x0 and p(G(1, τ )) = x1 for all τ ∈ [0, 1].

A straightforward application of (Let p: X~ → X be a covering map, let Z be a connected topological space, and let g:Z → X~ and h:Z → X~ be continuous maps.

Suppose that p ◦g = p ◦ h and that g(z) = h(z) for some z ∈ Z. Then g = h.) shows that any continuous lift of a constant path must itself be a constant path. Therefore G(0, τ ) = x˜0

and G(1, τ ) = x˜1 for all τ ∈ [0, 1], where x˜0 = G(0, 0) = α˜ (0), x˜1 = G(1, 0).

However

         G(0, 0) = G(0, 1) = ˜x0 = ˜α(0) = β˜(0),

         p(G(t, 0)) = F(t, 0) = α(t) = p(˜α(t))

and

           p(G(t, 1)) = F(t, 1) = β(t) = p(β˜(t))

for all t ∈ [0, 1]. Now Proposition (Let p: X~ → X be a covering map, let Z be a connected topological space, and let g:Z → X~ and h:Z → X~ be continuous maps.  Suppose that p ◦g = p ◦ h and that g(z) = h(z) for some z ∈ Z. Then g = h.)ensures that the lifts α˜and β˜ of the paths α and β are uniquely determined by their starting points. It follows that               G(t, 0) = α˜ (t) and G(t, 1) = β˜(t) for all t ∈ [0, 1]. In particular,  

    α˜(1) = G(0, 1) = x˜1 = G(1, 1) = β˜(1).

Moreover the map G: [0, 1] × [0, 1] → X˜ is a homotopy between the paths α˜ and β˜ which satisfies G(0, τ ) = x˜0 and G(1, τ ) = x˜1 for all τ ∈ [0, 1]. It follows that α˜ ≃β˜                       rel {0, 1}, as required

Corollary 1.2 Let p: X˜ → X be a covering map over a topological space X, and let x˜0 be a point of X˜. Then the homomorphism

          p#: π1(X˜, x˜0) → π1(X, p(x˜0))

of fundamental groups induced by the covering map p is injective

Proof Let σ0 and σ1 be loops in  X~ based at the point  x~0, representing elements [σ0] and [σ1] of π1(X˜, x˜0). Suppose that p#0] = p#1]. Then p◦σ0 ≃ p ◦ σ1 rel {0, 1}. Also σ0(0) = x˜0 = σ1(0). Therefore σ0 ≃σ1 rel {0, 1}, by Proposition 1.1, and thus [σ0] = [σ1]. We conclude that the homomorphism  p#: π1(X˜, x˜0) → π1(X, p(x˜0)) is injective

Corollary 1.3 Let p: X˜ → X be a covering map over a topological space X, let x˜0 be a point of X˜, and let γ be a loop in X based at p(x˜0). Then  [γ] ∈ p#1(X˜, x˜0)) if and only if there exists a loop γ˜ in X˜, based at the point x˜0, such that p ◦ γ˜ = γ.

Proof If γ = p ◦ γ˜ for some loop γ˜ in X˜ based at x˜0 then [γ] = p#[γ˜], and therefore [γ] ∈ p#1(X˜, x˜0)).

Conversely suppose that [γ] ∈ p#1(X˜, x˜0)). We must show that there exists some loop γ˜ in X˜ based at x˜0 such that γ = p ◦ γ˜. Now there exists a loop σ in X˜ based at the point x ˜0 such that [γ] = p#([σ]) in π1(X, p(x˜0)).

Then γ ≃ p ◦ σ rel {0, 1}. It follows from the Path Lifting Theorem for covering maps that there exists a unique path γ˜: [0, 1] → X˜ in X˜ for which γ˜ (0) = x˜0 and p ◦ γ˜ = γ. It then follows from Proposition 1.1 that γ˜ (1) = σ(1) and γ˜ ≃ σ rel {0, 1}. But σ(1) = x˜0. Therefore the path γ˜ is the required loop in X˜ based the point x˜0 which satisfies                  p ◦ γ˜ = γ.

Corollary 1.4 Let p: X˜ → X be a covering map over a topological space X, let w0 and w1 be points of X˜ satisfying p(w0) = p(w1), and let α: [0, 1] → X˜ be a path in X˜ from w0 to w1. Suppose that [p ◦ α] ∈ p#1(X, w˜0)). Then the path α is a loop in X˜, and thus w0 = w1.

Proof It follows from Corollary 1.3 that there exists a loop β based at w0 satisfying p ◦ β = p ◦ α. Then α(0) = β(0). Now Proposition (Let p: X˜ → X be a covering map, let Z be a connected topological space, and let g:Z → X˜ and h:Z → X˜ be continuous maps. Suppose that p ◦ g = p ◦ h and that g(z) = h(z) for some z ∈ Z. Then g = h.) ensures that the lift to X˜ of any path in X is uniquely determined by its starting point. It follows that α = β. But then the path α must be a loop in X˜, and therefore w0 = w1, as required.

Corollary 1.5 Let p: X˜ → X be a covering map over a topological space X.  Let α: [0, 1] → X and β: [0, 1] → X be paths in X such that α(0) = β(0) and α(1) = β(1), and let α.β−1 be the loop in X defined such that

Let α˜: [0, 1] → X˜ and β˜: [0, 1] → X˜ be the unique paths in X˜ such that p ◦ α˜ = α, and p ◦ β˜ = β. Suppose that α˜(0) = β˜(0). Then α˜(1) = β˜(1) if and only if                                [α.β−1] ∈ p#1(X˜, x˜0)), where x˜0 = α˜(0) = β˜(0).

Proof Suppose that α˜(1) = β˜(1). Then the concatenation α˜.β˜−1 is a loop in X˜ based at x˜0, and [α.β−1] = p#([α˜.β˜−1]), and therefore [α.β−1] ∈ p#1(X ˜, x˜0)).  Conversely suppose that α˜ and β˜ are paths in X˜ satisfying p ◦ α˜ = α,  p ◦ β˜ = β and α˜(0) = β˜(0) = x˜0, and that [α.β−1] ∈ p#1(X˜, x˜0)). We must show that α˜(1) = β˜(1). Let γ: [0, 1] → X be the loop based at p(x˜0) given by γ = α.β−1. Thus

 

Then [γ] ∈ p#1(X˜, x˜0)). It follows from Corollary 1.3 that there exists a loop γ˜ in X˜ based at x˜0 such that p ◦ γ˜ = γ. Let αˆ: [0, 1] → X˜ and Let βˆ: [0, 1] → X˜ be the paths in X˜ defined such that αˆ (t) = γ˜ (1/2t)    and    βˆ(t) = γ˜ (1 −1/2t) for all t ∈ [0, 1]. Then

           α˜(0) = αˆ (0) = β˜(0) = βˆ(0) = x˜0,  p ◦ αˆ = α = p ◦ α˜ and p ◦ βˆ = β = p ◦ β˜.

But Proposition (Let p: X˜ → X be a covering map, let Z be a connected topological space, and let g:Z → X˜ and h:Z → X˜ be continuous maps. Suppose that p ◦ g = p ◦ h and that g(z) = h(z) for some z ∈ Z. Then g = h.) ensures that the lift to X˜ of any path in X is uniquely determined by its starting point.

Therefore α˜ = α ˆand β˜ = βˆ. It follows that

α˜(1) = α(1ˆ) = γ˜ (1/2) = βˆ(1) = β˜(1),

as required.

Theorem 1.6 Let p: X˜ → X be a covering map over a topological space X.

Suppose that X˜ is path-connected and that X is simply-connected. Then the covering map p: X˜ → X is a homeomorphism.

Proof We show that the map p: X˜ → X is a bijection. This map is surjective  (since covering maps are by definition surjective). We must show that it is injective. Let w0 and w1 be points of X˜ with the property that p(w0) = p(w1). Then there exists a path α: [0, 1] → X˜ with α(0) = w0 and α(1) = w1, since X˜ is path-connected. Then p ◦ α is a loop in X based at the point x0, where x0 = p(w0). However π1 (X,p(w0)) is the trivial group, since X is simply- connected. It follows from Corollary 1.4 that the path α is a loop in X˜ based at w0, and therefore w0 = w1. This shows that the the covering map p: X˜ → X is injective. Thus the map p: X˜ → X is a bijection, and thus has a well-defined inverse p−1: X → X˜. It now follows from Lemma (Let p: X~ → X be a covering map. Then p(V ) is open in X  for every open set V in  X~. In particular, a covering map p: X~ → X is a homeomorphism if and only if it is a bijection.) that p: X˜ → X is a homeomorphism, as required.

Let p: X˜ → X be a covering map over some topological space X, and let x0 be some chosen basepoint of X. We shall investigate the dependence of the subgroup p#1(X˜, x˜)) of π1(X, x0) on the choice of the point x˜ in X˜,  where x˜ is chosen such that p(x˜) = x0. We first introduce some concepts from group theory.

Let G be a group, and let H be a subgroup of G. Given any g ∈ G, let gHg−1 denote the subset of G defined by

gHg−1 = {g0 ∈ G : g0 = ghg−1 for some h ∈ H}.

It is easy to verify that gHg−1 is a subgroup of G.

Definition Let G be a group, and let H and H0 be subgroups of G. We say that H and H0 are conjugate if and only if there exists some g ∈ G for which H0 = gHg−1 Note that if                    H0 = gHg−1      then  H = g−1H0g. The relation of conjugacy is an equivalence relation on the set of all subgroups of the group G. Moreover conjugate subgroups of G are isomorphic, since the homomorphism sending h ∈ H to ghg1 is an isomorphism from H to gHg−1 whose inverse is the homorphism sending h 0 ∈ gHg1 to g−1h0g.

A subgroup H of a group G is said to be a normal subgroup of G if ghg−1 ∈ H for all h ∈ H and g ∈ G. If H is a normal subgroup of G then gHg−1 ⊂ H for all g ∈ G. But then g−1Hg ⊂ H and H = g(g−1Hg)g−1 for all g ∈ G, and therefore H ⊂ gHg1 for all g ∈ G. It follows from this that a subgroup H of G is a normal subgroup if and only if gHg−1 = H for all g ∈ G. Thus a subgroup H of G is a normal subgroup if and only if there is no other subgroup of G conjugate to H.

Lemma 1.7 Let p: X˜ → X be a covering map over a topological space X.

Let x0 be a point of X, and let w0 and w1 be points of X˜ for which p(w0) = x0 = p(w1). Let H0 and H1 be the subgroups of π1(X, x0) defined by

H0 = p#1(X, w˜0)), H1 = p#1(X, w˜1)).

Suppose that the covering space X˜ is path-connected. Then the subgroups H0 and H1 of π1(X, x0) are conjugate. Moreover if H is any subgroup of π1(X, x0) which is conjugate to H0 then there exists an element w of X˜ for which p(w) = x and p#1(X, w˜ )) = H.

Proof Let α: [0, 1] → X˜ be a path in X˜ for which α(0) = w0 and α(1) = w1. (Such a path exists since X˜ is path-connected.) Then each loop σ in X˜ based at w1 determines a corresponding loop α.σ.α−1 in X˜ based at w0, where

 

(This loop traverses the path α from w0 to w1, then continues round the loop σ, and traverses the path α in the reverse direction in order to return from w1 to w0.) Let                  η: [0, 1] → X be the loop in X based at the point x0 given by η = p ◦ α, and let ϕ: π1(X, x0) → π1(X, x0) be the automorphism of the group π1(X, x0) defined such that ϕ([γ]) = [η][γ][η] −1 for all loops γ in X based at the point x0. Then p ◦ (α.σ.α−1) = η.(p ◦ σ).η−1, and therefore p#([α.σ.α−1]) = [η]p#([σ])[η]−1 = ϕ(p#([σ])) in π1(X, x0). It follows that ϕ(H1) ⊂ H0. Similarly ϕ−1 (H0) ⊂ H1, where ϕ−1 ([γ]) = [η]−1 [γ][η] for all loops γ in X based at the point x0. It follows that ϕ(H1) = H0, and thus the subgroups H0 and H1 are conjugate Now let H be a subgroup of π1(X, x0) which is conjugate to H0. Then H0 = [η]H[η]−1 for some loop η in X based at the point x0. It follows from the Path Lifting Theorem for covering maps (Theorem (Path Lifting Theorem)  that there exists a path α: [0, 1] → X˜ in X˜ for which α(0) = w0 and p ◦ α = η. Let w = α(1).

Then p#1(X, w˜ )) = [η]−1H0[η] = H,  as required.

 

 

 

 

 

 

 

 

 

 

 




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.