

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي


الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية


الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق


الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات


الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل


المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات


التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات


علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان
Covering Maps and the Monodromy Theorem-The Fundamental Group of the Circle
المؤلف:
David R. Wilkins
المصدر:
Algebraic Topology
الجزء والصفحة:
...
21-6-2017
1824
Theorem 1.6 π1(S1, b) ≅Z for any b ∈ S1.
Proof We regard S1 as the unit circle in R2. Without loss of generality, we can take b = (1, 0). Now the map p: R → S1 which sends t ∈ R to (cos 2πt,sin 2πt) is a covering map, and b = p(0). Moreover p(t1) = p(t2) if and only if t1 − t2 is an integer; in particular p(t) = b if and only if t is an integer.
Let α and β be loops in S1 based at b, and let ˜α and β˜ be paths in R that satisfy p ◦ α˜ = α and p ◦ β˜ = β. Suppose that α and β represent the same element of π1(S1, b). Then there exists a homotopy F: [0, 1] × [0, 1] → S1
such that F(t, 0) = α(t) and F(t, 1) = β(t) for all t ∈ [0, 1], and F(0, τ ) = F(1, τ ) = b for all τ ∈ [0, 1]. It follows from the Monodromy Theorem (Theorem 1.5) that this homotopy lifts to a continuous map G: [0, 1]×[0, 1] → R satisfying p ◦ G = F. Moreover G(0, τ ) and G(1, τ ) are integers for all τ ∈ [0, 1], since p(G(0, τ )) = b = p(G(1, τ )). Also G(t, 0)−α˜(t) and G(t, 1)− β˜(t) are integers for all t ∈ [0, 1], since p(G(t, 0)) = α(t) = p(α˜ (t)) and p(G(t, 1)) = β(t) = p(β˜(t)). Now any continuous integer-valued function on [0, 1] is constant, by the Intermediate Value Theorem. In particular the functions sending τ ∈ [0, 1] to G(0, τ ) and G(1, τ ) are constant, as are the functions sending t ∈ [0, 1] to G(t, 0) − α˜(t) and G(t, 1) − β˜(t). Thus
G(0, 0) = G(0, 1), G(1, 0) = G(1, 1),
G(1, 0) − α˜(1) = G(0, 0) − α˜(0), G(1, 1) − β˜(1) = G(0, 1) − β˜(0).
On combining these results, we see that
α˜(1) − α˜(0) = G(1, 0) − G(0, 0) = G(1, 1) − G(0, 1) = β˜(1) − β˜(0)
We conclude from this that there exists a well-defined function λ: π1(S1, b) → Z characterized by the property that λ([α]) = α˜ (1)−α˜(0) for all loops α based at b, where α˜: [0, 1] → R is any path in R satisfying p ◦ α˜ = α.
Next we show that λ is a homomorphism. Let α and β be any loops based at b, and let α˜ and β˜ be lifts of α and β. The element [α][β] of π1(S1, b) is represented by the product path α.β, where

(Note that σ(t) is well-defined when t =1/2.) Then p ◦ σ = α.β and thus
λ([α][β]) = λ([α.β]) = σ(1) − σ(0) = α˜ (1) − α˜(0) + β˜(1) − β˜(0)
= λ([α]) + λ([β]).
Thus λ: π1(S1, b) → Z is a homomorphism.
Now suppose that λ([α]) = λ([β]). Let F: [0, 1] × [0, 1] → S1 be the homotopy between α and β defined by
F(t, τ ) = p( (1 − τ ) α˜ (t) + τβ˜(t) ),
where α˜ and β˜ are the lifts of α and β respectively starting at 0. Now β˜(1) = λ([β]) = λ([α]) = α˜ (1), and β˜(0) = α˜ (0) = 0. Therefore F(0, τ ) = b = p(α˜ (1)) = F(1, τ ) for all τ ∈ [0, 1]. Thus α ≃β rel {0, 1}, and therefore [α] = [β]. This shows that λ: π1(S1, b) → Z is injective.
The homomorphism λ is surjective, since n = λ([γn]) for all n ∈ Z, where the loop γn: [0, 1] → S1 is given by γn(t) = p(nt) = (cos 2πnt,sin 2πnt) for all t ∈ [0, 1]. We conclude that λ: π1(S1 , b) → Z is an isomorphism.
We now show that every continuous map from the closed disk D to itself has at least one fixed point. This is the two-dimensional version of the Brouwer Fixed Point Theorem.
Theorem 1.7 Let f: D → D be a continuous map which maps the closed disk D into itself. Then f(x0) = x0 for some x0 ∈ D Proof Let ∂D denote the boundary circle of D. The inclusion map i: ∂D → D induces a corresponding homomorphism i#: π1(∂D, b) → π1(D, b)of fun damental groups for any b ∈∂D.
Suppose that it were the case that the map f has no fixed point in D.
Then one could define a continuous map r: D → ∂D as follows: for each x ∈ D, let r(x) be the point on the boundary ∂D of D obtained by continuing the line segment joining f(x) to x beyond x until it intersects ∂D at the point r(x). Note that r|∂D is the identity map of ∂D.
Let r#: π1(D, b) → π1(∂D, b) be the homomorphism of fundamental groups induced by r: D → ∂D. Now (r ◦ i)#: π1(∂D, b) → π1(∂D, b) is the identity isomorphism of π1(∂D, b), since r ◦ i: ∂D → ∂D is the identity map. But it follows directly from the definition of induced homomorphisms that (r ◦ i)# = r# ◦ i#. Therefore i#: π1(∂D, b) → π1(D, b) is injective, and r#: π1(D, b) → π1(∂D, b) is surjective. But this is impossible, since π1(∂D, b) ≅ Z (Theorem 1.6) and π1(D, b) is the trivial group. This contradiction shows that the continuous map f: D → D must have at least one fixed point.
الاكثر قراءة في التبلوجيا
اخر الاخبار
اخبار العتبة العباسية المقدسة
الآخبار الصحية

قسم الشؤون الفكرية يصدر كتاباً يوثق تاريخ السدانة في العتبة العباسية المقدسة
"المهمة".. إصدار قصصي يوثّق القصص الفائزة في مسابقة فتوى الدفاع المقدسة للقصة القصيرة
(نوافذ).. إصدار أدبي يوثق القصص الفائزة في مسابقة الإمام العسكري (عليه السلام)