المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

علم الفيزياء
عدد المواضيع في هذا القسم 12104 موضوعاً
الفيزياء الكلاسيكية
الفيزياء الحديثة
الفيزياء والعلوم الأخرى
مواضيع عامة في الفيزياء

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية


Metals, Insulators, and Semiconductors  
  
1336   08:59 صباحاً   date: 14-5-2017
Author : Donald A. Neamen
Book or Source : Semiconductor Physics and Devices
Page and Part : p 78


Read More
Date: 8-5-2017 1257
Date: 30-12-2020 1849
Date: 18-5-2016 1160

Metals, Insulators, and Semiconductors

Each crystal has its own energy-band structure. We noted that the splitting of the energy some basic differences in electrical characteristics caused by variations in band structure by considering some simplified energy bands.

There are several possible energy-band conditions to consider. Figure 1.1a shows an allowed energy band that is completely empty of electrons. If an electric field is applied, there are no particles to move, so there will be no current. Figure 1.1b shows another allowed energy band whose energy states are completely full of electrons. We argued in the previous section that a completely full energy band will also not give rise to a current. A material that has energy bands either completely empty or completely full is an insulator. The resistivity of an insulator is very large or, conversely, the conductivity of an insulator is very small. There are essentially no charged panicles that can contribute to a drift current. Figure 1.1c shows a simplified energy band diagram of an insulator. The bandgap energy Eg of an insulator is usually on the order of 3.5 to 6 eV or larger, so that at room temperature, there are essentially no electrons in the conduction band and the valence band remains completely full. There are very few thermally generated electrons and holes in an insulator.

Figure 1.2a shows an energy band with relatively few electrons near the bottom of the band. Now, if an electric field is applied, the electrons can gain energy, move to

Figure 1.1 Allowed energy bands showing (a) an empty band, (b) a completely full band. and (c) the bandgap energy between the two allowed bands.

Figure 1.2 Allowed energy bands showing (a) an almost empty band. (b) an almost full band, and (c) the bandgap energy between the two allowed bands.

Figure 1.3 Two possible energy bands of a metal showing (a) a partially filled band and (b) overlapping allowed energy bands.

higher energy states, and move through the crystal. The net flow of charge is a current. Figure 1.2b shows an allowed energy band that is almost full of electrons., which means that we can consider the holes in this band. If an electric field is applied, the holes can move and give rise to a current. Figure 1.2c shows the simplified energy band diagram for this case. The bandgap energy may be on the order of 1 eV. This energy-band diagram represents a semiconductor for T > 0 K. The resistivity of a semiconductor, as we will see in the next chapter, can be controlled and varied over many orders of magnitude.

The characteristics of a metal include a very low resistivity. The energy-hand diagram for a metal may be in one of two forms. Figure 1.3 a shows the case of a partially full band in which there are many electrons available for conduction, so that the material can exhibit a large electrical conductivity. Figure 1.3b shows another possible energy-band diagram of a metal. The hand splitting into allowed and forbidden energy bands is a complex phenomenon and Figure 1.3b shows a case in which the conduction and valence bands overlap at the equilibrium interatomic distance. As in the case shown in Figure 1.3a, there are large numbers of electrons as well as large numbers of empty energy states into which the electrons can move, so this material can also exhibit a very high electrical conductivity.




هو مجموعة نظريات فيزيائية ظهرت في القرن العشرين، الهدف منها تفسير عدة ظواهر تختص بالجسيمات والذرة ، وقد قامت هذه النظريات بدمج الخاصية الموجية بالخاصية الجسيمية، مكونة ما يعرف بازدواجية الموجة والجسيم. ونظرا لأهميّة الكم في بناء ميكانيكا الكم ، يعود سبب تسميتها ، وهو ما يعرف بأنه مصطلح فيزيائي ، استخدم لوصف الكمية الأصغر من الطاقة التي يمكن أن يتم تبادلها فيما بين الجسيمات.



جاءت تسمية كلمة ليزر LASER من الأحرف الأولى لفكرة عمل الليزر والمتمثلة في الجملة التالية: Light Amplification by Stimulated Emission of Radiation وتعني تضخيم الضوء Light Amplification بواسطة الانبعاث المحفز Stimulated Emission للإشعاع الكهرومغناطيسي.Radiation وقد تنبأ بوجود الليزر العالم البرت انشتاين في 1917 حيث وضع الأساس النظري لعملية الانبعاث المحفز .stimulated emission



الفيزياء النووية هي أحد أقسام علم الفيزياء الذي يهتم بدراسة نواة الذرة التي تحوي البروتونات والنيوترونات والترابط فيما بينهما, بالإضافة إلى تفسير وتصنيف خصائص النواة.يظن الكثير أن الفيزياء النووية ظهرت مع بداية الفيزياء الحديثة ولكن في الحقيقة أنها ظهرت منذ اكتشاف الذرة و لكنها بدأت تتضح أكثر مع بداية ظهور عصر الفيزياء الحديثة. أصبحت الفيزياء النووية في هذه الأيام ضرورة من ضروريات العالم المتطور.