تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Topological Spaces-Hausdorff Spaces
المؤلف:
David R. Wilkins
المصدر:
Algebraic Topology
الجزء والصفحة:
4-5
24-9-2016
1699
Definition: A topological space X is said to be a Hausdorff space if and only if it satisfies the following Hausdorff Axiom:
• if x and y are distinct points of X then there exist open sets U and V such that x ∈ U, y ∈ V and U ∩ V = ∅.
Lemma 1.1 All metric spaces are Hausdorff spaces.
Proof Let X be a metric space with distance function d, and let x and y be points of X, where x ≠y. Let ε =1/2d(x, y). Then the open balls BX(x, ε) and BX(y, ε) of radius ε centred on the points x and y are open sets (see Lemma 1.1). If BX(x, ε) ∩ BX(y, ε) were non-empty then there would exist z ∈ X satisfying d(x, z) < ε and d(z, y) < ε. But this is impossible, since it would then follow from the Triangle Inequality that d(x, y) < 2ε, contrary to the choice of ε. Thus x ∈ BX(x, ε), y ∈ BX(y, ε), BX(x, ε) ∩ BX(y, ε) = ∅.
This shows that the metric space X is a Hausdorff space.
We now give an example of a topological space which is not a Hausdorff space.
Example :The Zariski topology on the set R of real numbers is defined as follows: a subset U of R is open (with respect to the Zariski topology) if and only if either U = ∅ or else R U is finite. It is a straightforward exercise to verify that the topological space axioms are satisfied, so that the set R of real numbers is a topological space with respect to this Zariski topology. Now the intersection of any two non-empty open sets in this topology is always non-empty. (Indeed if U and V are non-empty open sets then U = R F1and V = R F2, where F1 and F2 are finite sets of real numbers. But then U ∩ V = R (F1 ∪ F2), which is non-empty, since F1 ∪ F2 is finite and R is infinite.) It follows immediately from this that R, with the Zariski topology, is not a Hausdorff space.
الاكثر قراءة في التبلوجيا
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
