Read More
Date: 9-2-2016
1735
Date: 11-5-2022
1725
Date: 19-4-2022
1950
|
A bicolorable graph is a graph with chromatic number . A graph is bicolorable iff it has no odd graph cycles (König 1950, p. 170; Skiena 1990, p. 213; Harary 1994, p. 127). Bicolorable graphs are equivalent to bipartite graphs (Skiena 1990, p. 213). The numbers of bipartite graphs on , 2, ... nodes are 1, 2, 3, 7, 13, 35, 88, 303, ... (OEIS A033995). A graph can be tested for being bicolorable using BipartiteGraphQ[g], and one of its two bipartite sets of vertices can be found using FindIndependentVertexSet[g][[1]].
The following table lists some named bicolorable graphs.
graph | |
singleton graph | 1 |
square graph | 4 |
claw graph | 4 |
utility graph | 6 |
cubical graph | 8 |
Herschel graph | 11 |
Franklin graph | 12 |
Heawood graph | 14 |
tesseract graph | 16 |
Möbius-Kantor graph | 16 |
Hoffman graph | 16 |
Pappus graph | 18 |
Folkman graph | 20 |
Desargues graph | 20 |
truncated octahedral graph | 24 |
Walther graph | 25 |
Levi graph | 30 |
Dyck graph | 32 |
great rhombicuboctahedral graph | 48 |
gray graph | 54 |
Balaban 10-cage | 70 |
Foster graph | 90 |
great rhombicosidodecahedral graph | 120 |
Tutte 12-cage | 126 |
Harary, F. Graph Theory. Reading, MA: Addison-Wesley, 1994.
König, D. Theorie der endlichen und unendlichen Graphen. New York: Chelsea, 1950.
Skiena, S. Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathematica. Reading, MA: Addison-Wesley, 1990.Sloane, N. J. A. Sequence A033995 in "The On-Line Encyclopedia of Integer Sequences."
|
|
علامات بسيطة في جسدك قد تنذر بمرض "قاتل"
|
|
|
|
|
أول صور ثلاثية الأبعاد للغدة الزعترية البشرية
|
|
|
|
|
مكتبة أمّ البنين النسويّة تصدر العدد 212 من مجلّة رياض الزهراء (عليها السلام)
|
|
|