Bicolorable Graph					
				 
				
					
						
						 المؤلف:  
						Harary, F					
					
						
						 المصدر:  
						Graph Theory. Reading, MA: Addison-Wesley, 1994.					
					
						
						 الجزء والصفحة:  
						...					
					
					
						
						24-3-2022
					
					
						
						2460					
				 
				
				
				
				
				
				
				
				
				
			 
			
			
				
				Bicolorable Graph
 

A bicolorable graph 
 is a graph with chromatic number 
. A graph is bicolorable iff it has no odd graph cycles (König 1950, p. 170; Skiena 1990, p. 213; Harary 1994, p. 127). Bicolorable graphs are equivalent to bipartite graphs (Skiena 1990, p. 213). The numbers of bipartite graphs on 
, 2, ... nodes are 1, 2, 3, 7, 13, 35, 88, 303, ... (OEIS A033995). A graph can be tested for being bicolorable using BipartiteGraphQ[g], and one of its two bipartite sets of vertices can be found using FindIndependentVertexSet[g][[1]].
The following table lists some named bicolorable graphs.
	
		
			graph   | 
			  | 
		
		
			| singleton graph | 
			1 | 
		
		
			| square graph | 
			4 | 
		
		
			| claw graph | 
			4 | 
		
		
			| utility graph | 
			6 | 
		
		
			| cubical graph | 
			8 | 
		
		
			| Herschel graph | 
			11 | 
		
		
			| Franklin graph | 
			12 | 
		
		
			| Heawood graph | 
			14 | 
		
		
			| tesseract graph | 
			16 | 
		
		
			| Möbius-Kantor graph | 
			16 | 
		
		
			| Hoffman graph | 
			16 | 
		
		
			| Pappus graph | 
			18 | 
		
		
			| Folkman graph | 
			20 | 
		
		
			| Desargues graph | 
			20 | 
		
		
			| truncated octahedral graph | 
			24 | 
		
		
			| Walther graph | 
			25 | 
		
		
			| Levi graph | 
			30 | 
		
		
			| Dyck graph | 
			32 | 
		
		
			| great rhombicuboctahedral graph | 
			48 | 
		
		
			| gray graph | 
			54 | 
		
		
			| Balaban 10-cage | 
			70 | 
		
		
			| Foster graph | 
			90 | 
		
		
			| great rhombicosidodecahedral graph | 
			120 | 
		
		
			| Tutte 12-cage | 
			126 | 
		
	
REFERENCES
Harary, F. Graph Theory. Reading, MA: Addison-Wesley, 1994.
König, D. Theorie der endlichen und unendlichen Graphen. New York: Chelsea, 1950.
Skiena, S. Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathematica. Reading, MA: Addison-Wesley, 1990.Sloane, N. J. A. Sequence A033995 in "The On-Line Encyclopedia of Integer Sequences."
				
				
					
					
					 الاكثر قراءة في  نظرية البيان					
					
				 
				
				
					
					
						اخر الاخبار
					
					
						
							  اخبار العتبة العباسية المقدسة