تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
k-Cyclic Graph
المؤلف:
Alon, N.; Yuster, R.; and Zwick, U
المصدر:
"Finding and Counting Given Length Cycles." Algorithmica 17
الجزء والصفحة:
...
1-3-2022
1495
k-Cyclic Graph
Graphs corresponding to closed walks of length are known as
-cyclic graphs, or
-graphs for short.
-graphs are connected by definition. The numbers of
-graphs for
, 4, ... are 1, 3, 3, 10, 12, 35, 58, 160, 341, 958, 2444, 7242, 21190, 67217, 217335, ... (OEIS A081809; FlowProblems), the first few of which are illustrated above.
It appears that every connected simple graph on more than one node is for some value of
. For example, every connected graph on six or fewer nodes with the exception of the complete graph
is
for some
.
These graphs are important when counting graph cycles. This is because the number of (undirected) closed -walks in a graph with adjacency matrix
is given by
, where
denotes the matrix trace, but in order to compute the number
of
-cycles, all closed
-walks that are not cycles must be subtracted.
REFERENCES
Alon, N.; Yuster, R.; and Zwick, U. "Finding and Counting Given Length Cycles." Algorithmica 17, 209-223, 1997.
FlowProblem. "-Graphs." http://flowproblem.ru/cycles/explicit-formulae/ck-graphs.
الاكثر قراءة في نظرية البيان
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
