Read More
Date: 12-12-2021
603
Date: 9-12-2021
355
Date: 8-12-2021
320
|
A Gaussian quadrature-like formula for numerical estimation of integrals. It uses weighting function in the interval and forces all the weights to be equal. The general formula is
(1) |
where the abscissas are found by taking terms up to in the Maclaurin series of
(2) |
and then defining
(3) |
The roots of then give the abscissas. The first few values are
(4) |
|||
(5) |
|||
(6) |
|||
(7) |
|||
(8) |
|||
(9) |
|||
(10) |
|||
(11) |
|||
(12) |
|||
(13) |
(OEIS A002680 and A101270).
Because the roots are all real for and only (Hildebrand 1956), these are the only permissible orders for Chebyshev quadrature. The error term is
(14) |
where
(15) |
The first few values of are 2/3, 8/45, 1/15, 32/945, 13/756, and 16/1575 (Hildebrand 1956). Beyer (1987) gives abscissas up to and Hildebrand (1956) up to .
2 | |
3 | 0 |
4 | |
5 | 0 |
6 | |
7 | 0 |
9 | 0 |
The abscissas and weights can be computed analytically for small .
2 | |
3 | 0 |
4 | |
5 | 0 |
REFERENCES:
Beyer, W. H. CRC Standard Mathematical Tables, 28th ed. Boca Raton, FL: CRC Press, p. 466, 1987.
Hildebrand, F. B. Introduction to Numerical Analysis. New York: McGraw-Hill, pp. 345-351, 1956.
Salzer, H. E. "Tables for Facilitating the Use of Chebyshev's Quadrature Formula." J. Math. Phys. 26, 191-194, 1947.
Sloane, N. J. A. Sequences A002680/M2261 and A101270 in "The On-Line Encyclopedia of Integer Sequences."
|
|
علامات بسيطة في جسدك قد تنذر بمرض "قاتل"
|
|
|
|
|
أول صور ثلاثية الأبعاد للغدة الزعترية البشرية
|
|
|
|
|
العتبة الحسينية تطلق فعاليات المخيم القرآني الثالث في جامعة البصرة
|
|
|