

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي


الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية


الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق


الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات


الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل


المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات


التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات


علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان
Knot Diagram
المؤلف:
Hoste, J.; Thistlethwaite, M.; and Weeks, J.
المصدر:
"The First 1701936 Knots." Math. Intell. 20
الجزء والصفحة:
...
22-6-2021
1854
Knot Diagram

A knot diagram is a picture of a projection of a knot onto a plane. Usually, only double points are allowed (no more than two points are allowed to be superposed), and the double or crossing points must be "genuine crossings" which transverse in the plane. This means that double points must look like the above left diagram, and not the above right one. Also, it is usually demanded that a knot diagram contain the information if the crossings are overcrossings or undercrossings so that the original knot can be reconstructed.

The knot diagram of the trefoil knot is illustrated above.
Knot polynomials can be computed from knot diagrams. Such polynomials often (but not always) allow the knots corresponding to given diagrams to be uniquely identified.
Rolfsen (1976) gives a table of knot diagrams for knots up to 10 crossings and links up to four components and 9 crossings. Adams (1994) gives a smaller table of knots diagrams up to 9 crossings, two-component links up to 8 crossings, and three-component links up to 7 crossings. Livingston (1993) gives a list of diagrams for knots up to nine crossings.
REFERENCES:
Adams, C. C. "Table of Knots, Links, and Knot and Link Invariants." Appendix in The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots. New York: W. H. Freeman, pp. 279-290, 1994.
Hoste, J.; Thistlethwaite, M.; and Weeks, J. "The First
Knots." Math. Intell. 20, 33-48, Fall 1998.
Livingston, C. "Knot Table." Appendix 1 in Knot Theory. Washington, DC: Math. Assoc. Amer., pp. 221-228, 1993.
Rolfsen, D. "Table of Knots and Links." Appendix C in Knots and Links. Wilmington, DE: Publish or Perish Press, pp. 388-429, 1976.
الاكثر قراءة في التبلوجيا
اخر الاخبار
اخبار العتبة العباسية المقدسة
الآخبار الصحية

قسم الشؤون الفكرية يصدر كتاباً يوثق تاريخ السدانة في العتبة العباسية المقدسة
"المهمة".. إصدار قصصي يوثّق القصص الفائزة في مسابقة فتوى الدفاع المقدسة للقصة القصيرة
(نوافذ).. إصدار أدبي يوثق القصص الفائزة في مسابقة الإمام العسكري (عليه السلام)