تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Kontsevich Integral
المؤلف:
Bar-Natan, D
المصدر:
"On the Vassiliev Knot Invariants." Topology 34
الجزء والصفحة:
...
14-6-2021
4153
Kontsevich Integral
Kontsevich's integral is a far-reaching generalization of the Gauss integral for the linking number, and provides a tool to construct the universal Vassiliev invariant of a knot. In fact, any Vassiliev knot invariant can be derived from it.
To construct the Kontsevich integral, represent the three-dimensional space as a direct product of a complex line
with coordinate
and a real line
with coordinate
. The integral is defined for Morse knots, i.e., knots
embedded in
in such a way that the coordinate
is a Morse function on
, and its values belong to the graded completion
of the algebra of chord diagrams
.
The Kontsevich integral of the knot
is defined as
![]() |
(1) |
where the ingredients of this formula have the following meanings. The real numbers and
are the minimum and the maximum of the function
on
.
The integration domain is the -dimensional simplex
divided by the critical values into a certain number of connected components. For example, for the embedding of the unknot and
(left figure), the corresponding integration domain has six connected components, illustrated in the right figure above.
The number of addends in the integrand is constant in each connected component of the integration domain, but can be different for different components. In each plane {t=t_j} subset R^3" src="https://mathworld.wolfram.com/images/equations/KontsevichIntegral/Inline21.gif" style="height:21px; width:72px" />, choose an unordered pair of distinct points
and
on
so that
and
are continuous functions. Denote by
the set of such pairs for
, ...,
, then the integrand is the sum over all choices of
. In the example above, for the component
{t_(min)<t_1<t_(c_1),t_(c_2)<t_2<t_(max)}" src="https://mathworld.wolfram.com/images/equations/KontsevichIntegral/Inline31.gif" style="height:21px; width:170px" />, we have only one possible pair of points on the levels
{t=t_1}" src="https://mathworld.wolfram.com/images/equations/KontsevichIntegral/Inline32.gif" style="height:15px; width:41px" /> and
{t=t_2}" src="https://mathworld.wolfram.com/images/equations/KontsevichIntegral/Inline33.gif" style="height:15px; width:41px" />. Therefore, the sum over
for this component consists of only one addend. In contrast, in the component
{t_(min)<t_1<t_(c_1),t_(c_1)<t_2<t_(c_2)}" src="https://mathworld.wolfram.com/images/equations/KontsevichIntegral/Inline35.gif" style="height:21px; width:163px" />, we still have only one possibility for the level
{t=t_1}" src="https://mathworld.wolfram.com/images/equations/KontsevichIntegral/Inline36.gif" style="height:15px; width:41px" />, but the plane
{t=t_2}" src="https://mathworld.wolfram.com/images/equations/KontsevichIntegral/Inline37.gif" style="height:15px; width:41px" /> intersects our knot
in four points. So we have
possible pairs
, and the total number of addends is six (see the picture below).
For a pairing the symbol '
' denotes the number of points
or
in
where the coordinate
decreases along the orientation of
.
Fix a pairing , consider the knot
as an oriented circle, and connect the points
and
by a chord to obtain a chord diagram with
chords. The corresponding element of the algebra
is denoted
. In the picture above, one of the possible pairings, the corresponding chord diagram with the sign
, and the number of addends of the integrand (some of which are equal to zero in
due to a one-term relation) are shown for each connected component.
Over each connected component, and
are smooth functions in
. By
we mean the pullback of this form to the integration domain of variables
, ...,
. The integration domain is considered with the manifold orientation of the space
defined by the natural order of the coordinates
, ...,
.
By convention, the term in the Kontsevich integral corresponding to is the (only) chord diagram of order 0 with coefficient one. It represents the unit of the algebra
.
The Kontsevich integral is convergent thanks to one-term relations. It is invariant under deformations of the knot in the class of Morse knots. Unfortunately, the Kontsevich integral is not invariant under deformations that change the number of critical points of the function . However, the formula shows how the integral changes under such deformations:
In the above equation, the graphical arguments of represent two embeddings of an arbitrary knot, differing only in the illustrated fragment,
is the hump (i.e., the unknot embedded in
in the specified way; illustrated above), and the product is the product in the completed algebra
of chord diagrams. The last equality allows the definition of the universal Vassiliev invariant by the formula
![]() |
(2) |
where denotes the number of critical points of
and quotient means division in the algebra
according to the rule
. The universal Vassiliev invariant
is invariant under an arbitrary deformation of
.
Consider a function on the set of chord diagrams with
chords satisfying one- and four-term relations (a weight system). Applying this function to the universal Vassiliev invariant
, we get a numerical knot invariant. This invariant will be a Vassiliev invariant of order
, and any Vassiliev invariant can be obtained in this way.
The Kontsevich integral behaves in a nice way with respect to the natural operations on knots, such as mirror reflection, changing the orientation of the knot, and mutation of knots. In a proper normalization it is multiplicative under the connected sum of knots:
![]() |
(3) |
where . For any knot
the coefficients in the expansion of
over an arbitrary basis consisting of chord diagrams are rational (Kontsevich 1993, Le and Murakami 1996).
The task of computing the Kontsevich integral is very difficult. The explicit expression of the universal Vassiliev invariant is currently known only for the unknot,
![]() |
![]() |
![]() |
(4) |
![]() |
![]() |
![]() |
(5) |
(Bar-Natan et al. 1995). Here, are modified Bernoulli numbers, i.e., the coefficients of the Taylor series
![]() |
(6) |
(,
, ...; OEIS A057868), and
are the wheels, i.e., diagrams of the form
The linear combination is understood as an element of the algebra of Chinese characters , which is isomorphic to the algebra of chord diagrams
. Expressed through chord diagrams, the beginning of this series looks as follows:
The Kontsevich integral was invented by Kontsevich (1993), and detailed expositions can be found in Arnol'd (1994), Bar-Natan (1995), and Chmutov and Duzhin (2000).
REFERENCES:
Arnol'd, V. I. "Vassiliev's Theory of Discriminants and Knots." In First European Congress of Mathematics, Vol. 1 (Paris, 1992) (Ed. A. Joseph, F. Mignot, F. Murat, B. Prum, and R. Rentschler). Basel, Switzerland: Birkhäuser, pp. 3-29, 1994.
Bar-Natan, D. "On the Vassiliev Knot Invariants." Topology 34, 423-472, 1995.
Bar-Natan, D.; Garoufalidis, S.; Rozansky, L.; and Thurston, D. "Wheels, Wheeling, and the Kontsevich Integral of the Unknot." Israel J. Math. 119, 217-237, 2000.
Chmutov, S. V. and Duzhin, S. V. "The Kontsevich Integral." Acta Appl. Math. 66, 155-190, 2000.
Kontsevich, M. "Vassiliev's Knot Invariants." Adv. Soviet Math. 16, Part 2, 137-150, 1993.
Le, T. Q. T. and Murakami, J. "The Universal Vassiliev-Kontsevich Invariant for Framed Oriented Links." Compos. Math. 102, 42-64, 1996.
Sloane, N. J. A. Sequence A057868 in "The On-Line Encyclopedia of Integer Sequences."
Vassiliev, V. A. "Cohomology of Knot Spaces." In Theory of Singularities and Its Applications (Ed. V. I. Arnold). Adv. Soviet Math. 1, 23-69, 1990.
الاكثر قراءة في التبلوجيا
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
