Read More
Date: 6-7-2017
1440
Date: 8-6-2021
1851
Date: 17-5-2021
1539
|
The algebraic unknotting number of a knot in is defined as the algebraic unknotting number of the -equivalence class of a Seifert matrix of . The algebraic unknotting number of an element in an -equivalent class is defined as the minimum number of algebraic unknotting operations necessary to transform the element to the -equivalence class of the zero matrix (Saeki 1999).
REFERENCES:
Fogel, M. "Knots with Algebraic Unknotting Number One." Pacific J. Math. 163, 277-295, 1994.
Murakami, H. "Algebraic Unknotting Operation, Q&A." Gen. Topology 8, 283-292, 1990.
Saeki, O. "On Algebraic Unknotting Numbers of Knots." Tokyo J. Math. 22, 425-443, 1999.
|
|
علامات بسيطة في جسدك قد تنذر بمرض "قاتل"
|
|
|
|
|
أول صور ثلاثية الأبعاد للغدة الزعترية البشرية
|
|
|
|
|
مدرسة دار العلم.. صرح علميّ متميز في كربلاء لنشر علوم أهل البيت (عليهم السلام)
|
|
|